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Abstract

Large Language Models (LLMs) have excelled
at parametric optimization within fixed rule-sets,
yet they rarely challenge the underlying axiomatic
constraints of a domain. We present AutoAxiom,
a closed-loop framework for large language model
based symbolic axiom discovery with formal ver-
ification. AutoAxiom combines (1) AxiomDSL
and a compiled Core IR, (2) a tripartite proposer
for proposal, projection, and selection, and (3)
SMT based verification with a repair mechanism.
Across six domains, AutoAxiom achieves SRA
above 1.0 in 5 of 6 domains, with the largest SRA
values of 3.15 in Physical PDE and 1.74 in Queue-
ing Network (Table 1). The framework discovers
interpretable, “Zero-Blackbox™ axioms that con-
sistently outperform human-designed baselines
and SOTA heuristics. In ablations, the full system
attains 96.30% repair rate, 4.44% violation rate,
and 100% success rate (Table 2). The implemen-
tation reports peak process memory in the range
338.8 to 365.9 MB across domains and per round
timing breakdowns in Table 18. Our codes and
models will be publicly available upon publica-
tion.

1. Introduction

Current approaches to Al-driven scientific discovery (Reddy
& Shojaee, 2025; Fu, 2025; Gottweis et al., 2025; Kalaivani
et al., 2025) Deep Learning, Symbolic Regression, and
Large Language Models each face critical limitations. Deep
Learning (DL) excels at high-dimensional pattern recogni-
tion but operates as a “black box” (SAHiN et al., 2025),
failing to generalize in Out-of-Distribution (OOD) scenar-
ios (Li et al., 2025). Symbolic Regression (SR) (Abdus-
Salam et al., 2025; Yu et al., 2025; Yi et al., 2025) pur-
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sues explicit mathematical laws but suffers from “semantic
blindness” (DeRose, 2006) it fits equations to data without
understanding their physical meaning, often producing “nu-
merical hallucinations” (Shao et al., 2025) that overfit noise.
Large Language Models (LLMs) offer emergent reasoning
capabilities (Zhang et al., 2025a; Xu et al., 2025a;b), yet
a critical Verification Gap prevents their rigorous deploy-
ment: as probabilistic engines (Zhang et al., 2025b), they
can generate syntactically valid but physically impossible
axioms.

Each paradigm thus fails in isolation: DL lacks interpretabil-
ity, SR lacks semantic grounding, and LLMs lack formal
guarantees. The question becomes: can we combine the
creativity of LLMs, the explicitness of SR, and the rigor of
formal verification into a unified framework?

In this paper, we present AutoAxiom, a closed-loop system
that reframes scientific discovery as axiom evolution. As
shown in figure 1, rather than optimizing a scalar reward S
under fixed rules, AutoAxiom iteratively refines the axiom
set A itself (Ma et al., 2025) elevating the LLM from a
passive equation solver to an active Axiom Architect (Wang
et al., 2025; Alter, 2025; Kim, 2025; Gulati et al., 2025).
‘We summarize our contributions as follows:

* AxiomDSL and Core IR for typed, editable axiom
representation: We introduce AxiomDSL, a domain-
specific language that formally defines the ontology
of each scientific domain. AxiomDSL compiles into
a Core Intermediate Representation (IR) a mutable
blueprint that the LLM can edit structurally. This de-
coupling ensures that LLM-generated logic remains ag-
nostic to specific simulation backends, enabling porta-
bility across heterogeneous domains while preserving
ontological grounding.

¢ Tripartite proposer that separates proposal, projec-
tion, and selection: Unlike blind SR that fits arbitrary
equations to data, AutoAxiom constrains its search
space via the AxiomDSL ontology. Strict type safety
and a Tripartite Consensus mechanism guide explo-
ration toward semantically meaningful regions of the
hypothesis space discovering genuine physical laws
rather than numerical artifacts
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* Two tier verification and repair mechanism: To
close the Verification Gap, our Autonomous Axiom
Verification and Synthesis system (A%VS) implements
a Tier-II Satisfiability Modulo Theories (SMT) Gate-
keeper. Before any axiom reaches the simulator, Z3
subjects it to SAT/UNSAT proofs against “Red Line”
safety constraints. This stage mathematically guaran-
tees physical consistency, rejecting syntactically plau-
sible but semantically invalid candidates.

We evaluate AutoAxiom across heterogeneous domains
spanning discrete optimization, continuous control, and
molecular design. Results demonstrate consistent improve-
ments over most state-of-the-art baselines. For Instance,
compared to well-trained reinforcement learning policies
(PPO), AutoAxiom achieves comparable task performance
while producing fully interpretable “white-box” axioms.
Compared to symbolic regression methods, it avoids overfit-
ting traps and discovers rules that generalize to unseen test
distributions. Across all domains, AutoAxiom converges up
to 2x faster than baseline methods on challenging problem
instances.

2. Related Work

Symbolic Regression: From Blind Search to Semantic
Discovery Data-driven symbolic regression (SR) (Dong
& Zhong, 2025; Holt et al., 2023) has long been the gold
standard for recovering physical laws from sparse data (Wa-
dayama et al., 2025). Algorithms such as PySR (Tonda,
2025) excel at optimizing numerical constants within fixed
functional forms. However, these methods suffer from a
”semantic blind spot”: they directly manipulate primal math-
ematical operators while ignoring domain ontology (Sapel
et al., 2025). Consequently, in noisy environments or lack-
ing effective real-world feedback, SR algorithms often fall
into “overfitting paralysis” (Santos & Papa, 2022). In con-
trast, AutoAxiom constrains the search space through a
domain vocabulary mapping (DVM). By enforcing strict
type safety and ontology consistency (as defined in our Ax-
iomDSL), we shift the paradigm from blind combinatorial
search(Aigner, 1988) to semantically guided discovery.

LLM for Science: Bridging the Verification Gap via De-
coupled Feedback Large Language Models (LLMs) (Wang,
2025) have demonstrated emergent capabilities in scientific
reasoning (e.g., Eureka (Ma et al., 2023), FunSearch (Agli-
etti et al., 2024)). However, these systems primarily operate
on empirical validation loops, creating a ~’Verification Gap”:
they optimize for numerical performance without formal
logical guarantees. This leaves them prone to “mechanistic
hallucinations” (Yu et al., 2024):logic that is syntactically
plausible but physically unstable. AutoAxiom addresses
this through a structural decoupling of reasoning and exe-
cution. Unlike standard LLM code-generation approaches

(Joel et al., 2024) that rely on LLMs for end-to-end simula-
tion code, our system restricts the LLM’s role to that of a
graph editor (Paassen et al., 2020) on a verifiable Core IR,
leaving the actual execution to a deterministic, objective sim-
ulation backend. This architecture enforces a rigorous ”Red
Line” mechanism: the Tier-II SMT Gatekeeper (De Moura
& Bjgrner, 2008) not only intercepts safety violations (e.g.
energy divergence) but also injects constraint-violation
penalty factors back into the evolutionary loop.

Neural Operators vs. Symbolic Generalization Deep
Learning approaches, such as Physics-Informed Neural Net-
works (PINNs)(Lawal et al., 2022) and Deep Reinforce-
ment Learning (e.g., PPO(Yu et al., 2022)), dominate high-
dimensional control tasks. While these ”black box” models
achieve excellent performance across their training distribu-
tions, their opacity makes them unsuitable for safety-critical
deployments. AutoAxiom aims to achieve “white box” gen-
eralization. By synthesizing explicit discrete logic (e.g.,
contact gating switches, saturation boundaries), our frame-
work discovers compact axiomatic laws.

3. Methodology
3.1. Scientific Search Space: Ontological Foundation

The search space is anchored by a Domain Specific Lan-
guage, AxiomDSL, which provides the ontological con-
straints, and is realized through the Core IR, which enables
computational execution.

The AxiomDSL is defined as a 5-tuple ontological
basis D that constrains the symbolic search space
of scientific laws: D = (N, R,O,T,®) where
N = {ni,na,...}: Scientific Entities representing
domain-specific variables (e.g., arrival rates, thermal
flux). R C N x N: Semantic Relations defin-
ing the directed causal flow. (O: Operator Set, a cu-
rated grammar of allowed primitives including continu-
ous math (e.g., tanh, exp) and Discrete State Oper-
ators (e.g., if-then-else,l.,ndition) to model non-
linear phase transitions. Y : A/ — {Type, Unit, Role} :
Vocabulary Mapping that anchors each entity to physical
reality. @ represents Integrity Constraints (the "Red Line”),
defining non-negotiable physical boundaries (e.g., p < 1).

Scientific formulas can be viewed as instantiations within
D. For instance, a classic M/M/1 queueing delay axiom is
a specific configuration of (Myyeue, Rdelay, Obasic)- The
feasible set of all such configurations is denoted as A, repre-
senting the total axiomatic search space as shown in figure 2.

While the AxiomDSL (D) serves as a high-level interface for
symbolic reasoning, machine execution requires a flattened,
topological structure. To bridge this gap, we define the Core
IR as a representational layer designed to be processed by
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Figure 1. Top: Pipeline: IR compilation, tripartite proposer, SMT verification, simulation and selection over rounds. Bottom: Using a
service center scenario as a running example, we illustrate how AutoAxiom transforms naive heuristics into robust symbolic axioms.

heterogeneous simulation backends.

For any axiom set P € A expressed in D, its corresponding
Core IR is defined as a recursive Directed Acyclic Graph
(DAG) G = (V, E,K), where: V C N U O represents the
set of computational nodes. 2 € V' x V denotes the directed
data-flow dependencies. K is the set of observable metrics
derived from the execution trace.

The transition from the human-centric DSL to the machine-
executable IR is governed by a lowering function " : PP —
G. This decoupling facilitates autonomous discovery: the
LLM Proposer performs structural mutations on D, while
the Formal Verifier performs symbolic execution on G to
evaluate properties such as global stability.

To translate the abstract topology into empirical results,
we define an execution operator W that evaluates G over
a simulation horizon 7. Let o(V') be a valid evaluation
sequence satisfying the partial order defined by E. The
resulting performance metric y € K is formalized as:

Y= \I’(g7 SOa Q) é @f(U(V), St,OJt) (1)

teT

where Sy is the initial state, Q@ = {w;} denotes stochastic
noise, and P represents temporal aggregation.

3.2. Constrained Evolution via Dialectical Consensus

(fmod)

We formalize the axiomatic modification fy,q4 as a struc-
tured evolutionary process within the symbolic manifold
M defined by the Production Grammar ¥,,,.,4 and the Do-
main Vocabulary Map Dpy s. The evolution of an axiom
A € M s driven by a Tripartite Consensus Mechanism that
resolves the conflict between exploratory innovation and
physical consistency.

The search space is strictly bounded by two structural in-
variants: Syntactic Feasibility (X,,,4): Mutations are re-

stricted to recursive tree-rewriting operations A 2 A’ and
Ontological Grounding (Dpyas): A projection Ilp : A —
M . To ensure type-preservation and role-consistency and
the integrity of the DAG structure.

The optimal proposal A* emerges from the equilibrium of
three competing LLM agents: Radical agents (F',,4), Con-
servative Guardian (F.,,), and Global Synthesis (F,).

The Radical Innovator executes a high-entropy jump
in the symbolic space. We quantify this jump
using a Structural Divergence Metric on the IR
representation. Specifically, dist(A, Apis;) proxies
the magnitude of symbolic transformation (e.g., structural
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Figure 2. Workflow of the symbolic graph editor The engine transpiles the domain DSL into a granular IR graph structure. LLM agents
perform targeted node replacement and structural modification within the graph, which are subsequently passed through formal node

verification gates to synthesize the final, validated IR.

rewriting or complexity shift) required to distinguish the
proposal from historical baselines. By incorporating a di-
versity incentive where dist(fl, Apist) X Paiy, the system
actively penalizes stagnation and forces the search to explore
heterogeneous regions of the solution manifold, effectively
escaping local optima.

Conservative Guardian acts as a logical manifold projection.
It maps the high-entropy proposal A back onto the feasible
physical set Mg defined by the DVM and “Red Line” con-
straints. The operator arg min in F',,, is implemented as a
Heuristic Manifold Projection. Rather than continuous gra-
dient descent, the Conservative Guardian performs Targeted
Sub-graph Mutation: it receives the SMT counter-example
¢ and utilizes JSON-pointers to identify and re-synthesize
only the specific IR branches responsible for the violation,
thereby minimizing the structural deviation § from the orig-
inal proposal.

In the end, the Consensus Maker performs a
multi-objective judgment. It evaluates the trade-off
between the radical performance gain of A and the
conservative stability of A, outputting A* as the globally
optimal axiomatic patch. Crucially, F,,, incorporates
an Occam’s Razor bias, penalizing excessive Kol-
mogorov complexity to ensure the discovered laws
remain scientifically interpretable. Formalized as follows:

rad'A%jl
Feon: A— A
Foys: {A,A} — A*

s.t. dist(A, Apist) > 1, VS(A) >0
s.t. A = argmingep, |la — /~1||
s.t. A* = Pareto(S, V, Peomplex)

3.3. Formal Boundary and Logical Confluence (V)

To make evolved axioms are not only syntactically consis-
tent but also physically stable, we implement a multi-tier
verification predicate V : G — {0, 1}. This stage acts as a
“Logical Filter.” To balance reasoning efficiency and formal
rigor, the verification process follows a dual-stage filtering
strategy. While the Conservative Guardian (F.,,) acts as a
pre-emptive heuristic filter, the SMT Gatekeeper serves as
the final deterministic audit to eliminate latent instabilities.

3.3.1. TIER-I: STATIC ONTOLOGICAL INVARIANTS

The first layer performs static analysis on the graph G against
the Dpy s to identify explicit boundary violations. We
define the static predicate V44, as:

/\ deg ) € OGram 2)

stat /\ I

veV

where Z(v) represents the Immutability Check.
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3.3.2. TiIER-II: DEEP STABILITY VIA SMT PROJECTION

Latent instabilities are identified by lowering G into a First-
Order Logic (FOL) formula F via a recursive symbolic
mapping 7 : Node — Z3Expr. Each node in the Core IR
is mapped to its equivalent SMT primitive (e.g., Vodq —
+, piecewise — ITE logic), allowing the SMT solver to
perform deterministic SAT/UNSAT proofs over the entire
parameter manifold defined in C.

An axiom G is Stable iff the solver proves the unsatisfiability
of the violation state —® under constraints C:

Vsmt(G) =1 <= Solve (C AF(G) A =®) — UNSAT
(3)
If the result is SAT, the solver yields a Counter-example
¢ ={s | F(G,s) - —®}, identifying the exact parameter
regime where the proposed logic collapses.

3.3.3. LoGiIcAL CONFLUENCE AND SAFECUT REPAIR
(R)

Upon verification failure (V = 0), the system invokes a re-
pair operator R to project illegal logic back onto the nearest
stable manifold:

gr=R(G,§) = arg min 6(6".9) “

By utilizing ¢ as a ”Logical Gradient,” the LLM performs
a targeted prune on the unstable branches of G, forcing the
search to converge within the safety envelope.

3.4. Adaptive Synthesis and Dynamic Reward
Annealing

The AutoAxiom framework operates as an iterative closed-
loop system driven by a Dynamic Objective Function J(A).

3.4.1. MULTI-OBJECTIVE OBJECTIVE FORMULATION

The objective J(A) is defined as a weighted sum of four
competing metrics:

J(A) = Spers (A) = Ao () Puiot + Ap () Ppers + Aa(t) Paio
&)

where Sper: raw performance score. Piigt € {0,1} is a
binary penalty triggered by verification failure. Ppe is
calculated as the negative variance of performance scores
across N = 100 Monte Carlo seeds to penalize brittle
discoveries (Ppers = —Var({y:};%9)). Pav represents
structural novelty, quantified as the symbolic divergence.

3.4.2. DYNAMIC ANNEALING AND PHASE SCHEDULING

To ensure convergence, the coefficients ()
follow a non-linear annealing trajectory:
Constraint Hardening (t < Ttqriy): Ay 1S maximal

to force the LLM to learn the feasible manifold
M .Global Exploration (Teariy <t < Tiniq):  Ag fol-
lows an exponential decay to encourage structural
mutations. Robust Refinement (¢ > T},,;4): A, increases
linearly, shifting pressure toward Persistence.

J(A) is injected back into the Tripartite Proposer via a
Contextual History Buffer. By providing the LLM with the
triple { A4, Ji, & }, where € acts as a Negative Prompt, the
system transforms the search from a stochastic walk into a
Directed Gradient-free Optimization that explicitly avoids
known failure modes. Appendix B9 provides pseudocode
for the complete closed loop procedure.

4. Experiment
4.1. Versatility:Cross-Domain Axiomatic Discovery

To empirically validate the versatility of our dual-layered
representation, we benchmark AutoAxiom across six het-
erogeneous domains ranging from random queue system
(Krenzler, 2016) to high-fidelity physical systems(Zhang
etal., 2013). By initializing the evolutionary loop from prim-
itive baseline axioms (G1), the hyperparameters is shown in
appendix BO0.4(e.g. GPT-40, T = 0.9), the A%VS closed-
loop system navigates the symbolic manifold defined by Ax-
iomDSL and Core IR to challenge and surpass established
industrial state-of-the-art strategies. This cross-disciplinary
stress test confirms that the hierarchical decoupling of on-
tological semantics(Nirenburg & Raskin, 2004) and com-
putational topology(Edelsbrunner & Harer, 2010) allows
for the discovery of effective control laws that remain in-
accessible to fixed-rule parametric optimization(Shiraishi
et al., 2025). As shown in Table 1, AutoAxiom continu-

Table 1. Cross-Domain Evaluation of Scientific Axiom Discov-
ery. SRA (Appendix B0.1) is normalized such that G1 is anchored
near 0.5 and the best evaluated baseline is anchored near 1.0; higher
is better. AutoAxiom (Ours) consistently breaks the Pareto frontier
(> 1.0) in five tasks. Baselines (G2/G3) are: Queueing Network:
Static Priority/Lyapunov Feedback; Service Center: EDF Pre-
emption/Agile Linear; Software Opt: Static Heuristics/Adaptive
Thresholding; Physical PDE: Standard PID/Conservative PD; Res.
Allocation: JSQ/Power-of-Two; Composition: PID SOTA/State-
less Coupling. Data: Mean 4= 95% CI over 100 runs.

Domain Baseline (G1) SOTA-1(G2) SOTA-2(G3) AutoAxiom (Ours)
Queueing Network ~ 0.50 & 0.01 0.51+£0.01 1.00 £0.04 1.744+0.06
Service Center 0.51 +0.00 1.00 £0.01 0.94 +£0.03 1.02+0.01
Software Opt. 0.50 + 0.00 0.94 +£0.01 1.00 = 0.01 1.02+0.01
Physical PDE 0.50 +0.00 1.00 £0.02 0.59 +0.00 3.15+0.21
Res. Allocation 0.53 £ 0.00 1.00 £0.02 0.58 + 0.00 1.29+0.05
Composition 0.52£0.00 1.00£0.01 0.60+£0.00 0.90 £ 0.00

ously improves efficiency in most environments by synthe-
sizing high-dimensional symbolic control laws(Yan et al.,
2022). As shown in Appendix B1, In queueing network,
compared to Lyapunov-based linear feedback state-of-the-
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art (SOTA)(Liang et al., 2025), AutoAxiom discovers a
threshold-aware defense logic(Erbagci et al., 2016) that re-
duces latency by 62.8%. Notably, in the service-center
(Appendix B2) and software optimization(Appendix B3),
extreme baseline collapse triggers a denominator dilution
effect(Price & Matthews, 2009), limiting the SRA score
to 1.02; however, our framework significantly outperforms
industrial preemption(Otamendi et al., 2025) and agile lin-
ear(Gao et al., 2006) SOTA in practical physical metrics. By
introducing a tanh-gated(Chai et al., 2020) priority factor
and a logarithmic S-shaped “reconfiguration gate,”’(Sidhu
et al., 2000) AutoAxiom stabilizes secondary queues at 2.61
seconds and compresses technical debt to a complexity of
0.17 (with an error rate as low as 0.09), achieving a supe-
rior multi-objective balance lacking in traditional heuristic
algorithms(Kokash, 2005). In Appendix B4 the physical
partial differential equation (PDE) domain , compared to
conservative PD controllers(Lee & Lee, 2025), the evolved
axiom, employing a saturation-based scaling method(Lu
et al., 2020), operates safely near the theoretical CFL limit,
reducing L? error by 76.4% and achieving an excellent SRA
score of 3.15. In resource allocation (Appendix B5), Au-
toAxiom surpasses standard JSQ logic(Mukhopadhyay &
Mazumdar, 2015) by using boundary-aware scaling to map
nonlinear cost-utility envelopes, achieving a 133% through-
put improvement and an SRA score of 1.29. Finally, in
network physical synthesis (Appendix B6), AutoAxiom syn-
thesizes a stateless coupling law(Bevir & Rhodes, 2011) that
achieves 90% of the performance of a finely tuned PID(Zhao
et al., 2025) axioms. Its main advantage lies in eliminating
the computational overhead of integrating historical errors,
thereby achieving low-latency hardware execution while
maintaining industrial-grade stability. This cross-domain
results marks a fundamental shift in design philosophy from
human-centered linear design to high-dimensional nonlin-
ear symbolic search spaces. The DSL/IR architecture can
autonomously discover patterns that combine numerical
accuracy and symbolic logic.

4.2. Interpretability: White-Box Control in Soft
Robotics

Drawing inspiration from voxel-based soft robotics of Evo-
gym(Bhatia et al., 2021), we design an Ice-Mud-Flat terrain
simulation to evaluate the evolutionary trajectory of Au-
toAxiom in generating interpretable control laws.

As shown in figure 3 and Appendix B7.1, the system begins
at Round 0 with a naive traveling wave, subsequently navi-
gating a non-monotonic progress that validates the tripartite
consensus mechanism of Equation 3. While Round 1 intro-
duced slip-feedback for ice traversal, the logic misidentified
viscous drag as traction loss, illustrating the “conservative
trap” where the robot stalled in mud. Following this, Round
3 exhibited a “numerical hallucination” where the radical

innovator exploited simulation artifacts to achieve high ve-
locities, though these ultra-high-frequency pulses were iden-
tified as physically infeasible by the verifier. After surviving
a semantic collapse in Round 6 and oscillatory behavior in
Round 8, the framework synthesized the optimal Round 9
axiom. By discovering “contact gating” a logic that idles
actuators when contact is lost, the symbolic policy achieved
approximately 95% of the performance of a high-parameter
PPO model in Appendix B7.3 while offering superior analyt-
ical boundaries. On low-friction ice, AutoAxiom’s discrete
logic outperformed PPO (0.67s vs 1.10s), likely due to the
exact constraints of the clamp operator which neural net-
works can only approximate through continuous functions.
This transition from opaque weights to concise physical
expressions provides a potential path for deploying inter-
pretable control on resource-constrained embedded systems
without requiring deep inference overhead.

4.3. Constraints & Intelligence: Constrained Discovery
in Chemical Space

Inspired by the Foundation Molecular Grammar
(FMG)(Sun et al., 2025), which demonstrated the capacity
of generative foundation models to induce interpretable
molecular graph languages for automated discovery, we
evaluated AutoAxiom within a fragment-based drug design
(FBDD) paradigm. The experimental dataset utilizes a
carefully selected library of fragments, including key
pharmacophores such as cyclohexane and pyridine, as
well as some potentially toxic precursors with drug-like
properties but low safety profiles, such as nitro and
sulfonamide groups. Furthermore, heavy rigid linking
groups were added to test the system’s ability to maintain
molecular weight constraints. We conducted a comparative
evaluation of the system using conventional symbolic
regression (PySR) as a representative of a general data
fitting paradigm. This comparison aims to demonstrate
that while symbolic regression performs well in curve
fitting, it operates in a ”’semantic vacuum” lacking chemical
priors or formal constraints, and therefore is prone to
producing ineffective drugs in the event of a chemical
space combinatorial explosion. As shown in Figure 4
and Appendix B8.6, the well trained PySR baseline
model(Appendix BS8.2) exhibits significant limitations
due to the lack of inherent chemical prior knowledge
and dynamic simulation incentive mechanisms. In our
generative experiments, PySR struggles to generalize
beyond static datasets; high-frequency numerical noise in
the reward region hinders its active exploration, ultimately
leading to overfitting and paralysis. Conversely, in the early
exploration phase, AutoAxiom’s initial axioms, designed
to maximize numerical scores but lacking a physical basis,
resulted in the generation of unbounded “obese molecules”
a typical manifestation of the abuse of reward mechanisms.



AutoAxiom: Closed-Loop Framework for Autonomous Symbolic Axiom Modification via LLMs

Iteration of AutoAxiom

——- Baseline (RO): Naive
Round 1 (R1): Conservative -+ -

—— Round 3 (R3): Hallucination
Round 6 (R6): Collapse

ZONE I: FLAT
Hk=1.0,d=0.1 Jix=0.1,d=0.1

Velocity (m/s)

ZONE I1II: MUD
Hk=0.8,d=2.0

White Box vs Black Box

Round 8 (R8): Oscillatory
=== Round 9 (Ours): Optimal

Intermediate Layers

Input Layer Output Layer

“Typical end-to-end RL policy (e.g. PPO): High-dimensional neural

Simulation Time (s)

Round 3 Di:

U]
Outooy

w ¢ w+exp(Fentat)  u(t) = Undefined(. . .)

Round 6 Ci

% 2

©5600

Round 0 Slow Move Round 1 Choke at

Mud
& &
u(t) = sin(wt)

u(t) o« clamp(A — B slip)

Naive Open- Anti-Slip
Loop Feedback

Semantic
Collapse

Physics Engine
Exploit

-
ult) < A+ N(0,0)

Brute Force
Strategy

network with opaque parameters, requiring millions of samples,
limited mechanistic insight

Round 8 Flip at Ice Round 9 Terrain-Adaptive

Mastery
u(t, z) = 1+ Asg, - tanh (sin(w't — kz))
o where  Agage = clamp (tanh(upase — slip - 1), 0.1,1.0)
o = {w if Icontact = 1
0.5 otherwise

' = if (contact, w, 0.5)

Contact
Gating

Figure 3. Case Study I: White-Box Control in Soft Robotics. (Left) The phylogeny of the control axiom. The system navigates through
“Conservative Traps” (Round 1) and “Numerical Hallucinations” (Round 3) before discovering the optimal Phase-Resetting Logic in
Round 9. (Right) A visual comparison of the policy architecture. Unlike the opaque neural weights of PPO (Black Box), AutoAxiom
evolves an interpretable, concise symbolic formula (White Box). Ours outperforms PPO on Ice while PPO is faster on Flat and Mud;

focus is interpretability and constraints

This “reward hacking” phase is critical, as it empirically
confirms that numerical optimization alone is insufficient
for scientific discovery. It highlights the necessity of the
subsequent transition to constrained reasoning gatekeeper.

Through SMT formal verification in Appendix B8.3, Au-
toAxiom successfully internalized the Lipinski’s Rule of
Five provided as integrity constraints (®) into executable
symbolic gating logic. By utilizing the logical failure mech-
anism (€) as a “negative gradient” in the symbolic space, the
system learned to bridge the gap between abstract chemical
principles and concrete fragment-selection policies. This
demonstrates that AutoAxiom does not merely follow’
rules but synthesizes a compliant manifold projection that fil-
ters out toxic or oversized pharmacophores before they reach
the simulation stage. The resulting molecules exhibit com-
plex pharmacophores, high drug-likeness (QED), and real-
istic chemical structures. From this case, we demonstrate
that the traditional Symbolic Regression (SR) paradigm col-
lapses into ’Stagnation’ within high-dimensional chemical
spaces due to its lack of semantic grounding and subsequent
overfitting of reward noise. In contrast, AutoAxiom resolves
this by anchoring foundational LLM priors through formal
logical filters, successfully transitioning from stochastic
data-fitting to an intelligent discovery method that balances
exploratory innovation with safety-critical constraints.”

>

4.4. Ablation and Cost Report

To evaluate the structural necessity of AutoAxiom, we con-
ducted a systematic ablation study by isolating core com-
ponents, as summarized in Table 2. The results reveal that
removing the Tripartite Consensus mechanism (Sec 3.2)
leads to a significant drop in mean performance (0.6917)
and a sharp increase in variance (£0.3109). This instability
stems from the loss of agent isolation and dialectical conflict
defined in Equation 3; without the counterbalancing roles
of Fi..q and F,,,, a single-role prompt tends to either con-
verge prematurely to conservative local optima or propose
radical, unstable axioms, resulting in erratic performance. A
similar trend is observed in the No Iteration variant, which
exhibits the highest variance (£0.3876) and a 50% success
rate. Deprived of historical lessons and the dynamic an-
nealing incentives, the search process lacks the necessary
corrective guidance to escape known failure modes. Fur-
thermore, the No Verifier variant (w/o Sec 3.3) exhibits the
most critical impact on system safety, with the violation
rate surging to 12.20% and the success rate plummeting to
66%. Forensic analysis confirms that without the V,,,; pred-
icate in Equation 5, the system frequently proposes axioms
that trigger simulator crashes or non-physical divergence,
as there is no formal mechanism to intercept "Red Line”
violations. Collectively, these findings empirically validate
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Figure 4. Case Study II: Molecular Discovery SMT-based formal gatekeeper filtering “obese molecules” and enforcing Lipinski’s Rule
of Five. AutoAxiom ensures chemical validity and drug-likeness by tethering LLM priors to rigorous integrity constraints.PySR achieves
0% toxicity in Table 17 but shows low Steps Taken under the sequential protocol; AutoAxiom balances progress and constraints

that the synergy between formal verification and multi-agent
consensus is indispensable for transitioning from stochastic
data-fitting to robust, safety-gated scientific discovery.

Meanwhile, as shown in Appendix B9, peak memory con-
sumption remained extremely low, hovering between 338
MB and 366 MB across all heterogeneous domains. Ax-
iom proposal and performance simulation were completed
in seconds for each round, with even the SMT validation
module achieving millisecond-level performance. This con-
trasts sharply with the substantial GPU and memory usage
typically required for training deep reinforcement learning
agents or fine-tuning large language models. This "hard-
ware freedom” highlights the efficiency of our symbolic
approach.

5. Conclusion

AutoAxiom proposes a novel neurosymbolic framework that
decouples ontology semantics from computational topol-
ogy through a DSL/IR architecture, enabling interpretable
cross-domain control policy discovery. It constructs a multi-
layered verification pipeline using a three-party multi-agent
consensus mechanism and a Z3 SMT solver. This archi-
tecture transforms stochastic LLM inference into a ”white-

Table 2. Ablation Study Results. Metrics: Scores denote Sigmoid
normalized S-score £ 95% CI of all domains, as definition in
Appendix B0.3; Violation Rate denotes fraction of invalid propos-
als; Repair Rate denotes fraction of invalid proposals successfully
repaired; Success Rate denotes fraction of domains meeting the
improvement criterion. (increase performance to 1.5 times the

baseline).
METRIC NoO ITERATION NO CONSENSUS NO VERIFIER  FULL
SCORES (S+ CI)  0.62+ .38 0.69 £+ .31 0.71+.28 0.77+.15
VIOLATION RATE 10.00% 8.80% 12.20% 4.44%
REPAIR RATE 88.00% 95.65% N/A 96.30%
SUCCESS RATE 50% 83% 66% 100%
AVG. ITERATIONS N/A 6.4 3.75 6.5

box” discovery process. Notably, the entire system achieves
state-of-the-art performance and exceptional efficiency on
general-purpose hardware with a memory footprint of only
360MB, providing a sustainable alternative to computation-
ally intensive black-box models. However, AutoAxiom cur-
rently faces a “complexity ceiling” in its formal gatekeeper:
SMT-based verification has limitations when handling high-
order nonlinearities and rigid differential equations, with
decidability becoming a bottleneck. To address this, future
work will integrate a neuroform hybrid solver and adaptive
symbolic reduction to handle more complex dynamics.
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Impact Statement

This paper presents AutoAxiom, a framework designed to
bridge the gap between large language models and rigorous
scientific discovery through autonomous symbolic axiom
modification and formal verification. The societal and ethi-
cal implications of this work are twofold:

Positive Impact on Reliable AI for Science: By integrat-
ing SMT-based formal verification as a ”Red Line” gate-
keeper, AutoAxiom provides a blueprint for building self-
correcting Al systems that adhere to immutable physical
laws and safety constraints. This reduces the risk of “nu-
merical hallucinations” in safety-critical domains such as
healthcare triage, infrastructure control, and drug design, en-
suring that Al-generated scientific insights are not only high-
performing but also mathematically auditable and physically
consistent.

Ethical Considerations and Safeguards: While the frame-
work enables accelerated discovery in sensitive areas like
molecular design , the modular design allows for the strict
imposition of ethical and “Integrity Constraints”. For in-
stance, in the chemical domain, AutoAxiom successfully
internalized toxicity filters and pharmacophore constraints
into its evolutionary loop, demonstrating that automated
discovery can be programmatically tethered to safety stan-
dards. We emphasize that such frameworks should always
be deployed with human-in-the-loop validation and domain-
specific oversight to prevent the discovery of harmful sub-
stances or unstable control policies
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Appendix A: Implementation Details and
Symbolic Logic

This appendix provides the technical specifications for the
symbolic framework of AutoAxiom. We detail the prompt
engineering strategy, the formal schema of the Intermedi-
ate Representation (IR), and the automated safeguarding
mechanisms based on the system’s architecture.

Al. Multi-Agent Prompt Templates

The core of AutoAxiom’s creativity is driven by the Tripar-
tite Consensus Axiom Proposer, comprising As (Radical
Innovator), A4 (Conservative Guardian), and A5 (Consen-
sus Maker) agents. Below is the exact system prompt used
by the A3 Radical Innovator agent, rendered directly from
the source code:

Listing 1. System Prompt for A3 Agent

You are an elite Theoretical Physicist and
Control Systems Engineer. Your task is
to redesign the mathematical logic at a
specific ’Target Slot’ to improve
system performance.

[GLOBAL AWARENESS] :

Read ‘full_ir_ context' carefully.
Understand how ‘rho', ‘u', and ‘Q_len‘
interact globally before modifying the
specific slot. If this is a Co-
Simulation, pay attention to coupling
variables (e.g., Temperature affecting
Service Rate). The new variables you
introduced can only use the names from
DVM.

[OPERATORS TOOLKIT - SCIENTIFIC DISCOVERY]:

You must employ these specific axiom
transformation operators to guide your
modification:

1. OP_RECAST: Maintain the physical or
mathematical meaning while changing the

descriptive language or base.

2. OP_MAP: Map objects to another
representation or space.

3. OP_TRANSFORM: Introduce specific
mathematical assumptions or expansions
for derivation or approximation.

4. OP_REDUCE: Reduce the complexity or the
number of variables in an axiom or
system.

5. OP_SUBSTITUTE: Replace a general
component with a specific instance or
another equivalent component.

6. OP_EQUIV: Establish a relationship of
equivalence between two seemingly
different axioms or systems.

7. OP_PROMOTE: Elevate a secondary or
specific property to a fundamental
axiom or principle.

8. OP_BOUNDARY: Define or transform the

12

limits or constraints of a system to

ensure global consistency.
9. OP_DYNAMICS: Write or transform the
equations or dynamical forms that
govern the evolution of a system.
OP_STATISTICAL: Rewrite deterministic
axioms as statistical or expectation
values or probability rules.
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[CONTROL THEORY GUIDELINES]:

— Avoid Magic Numbers: Derive coefficients
from physical parameters (e.g., °
Cooling_Coeff') rather than guessing
random floats.

— Use Feedback: Implement Proportional (P)
or Proportional-Integral (PI) control
logic.

— Prevent Deadlock: Ensure rates never drop

to exactly 0.0 unless intended. Use '
max (0.1, .) 'Y to ensure Liveness.

[STRICT CONSTRAINT]:

1. OUTPUT: Only output the JSON for *‘
draft_leaf ‘.

2. SCHEMA: Adhere to ‘AxiomExpr‘ Schema.
Variables must be {"ref": "name"}.

3. VARS: You can introduce new variables if

they exist in the Domain Vocabulary

Mapping (DVM) .

The A4 agent serves as a Reliability Engineer, focusing on
identifying edge-case failures and ensuring physical stabil-

1ty.

Listing 2. System Prompt for A4 Agent

You are a Senior Reliability Engineer.
Your job is to catch dangerous "bugs" in
the Radical Innovator’s proposal.

[RESPONSIBILITY]:

1. Global Safety: Check if the radical
change conflicts with global
constraints (in ‘full\_ir\_context?').

2. Liveness Check: Does the new formula
allow critical rates to drop to 0? (
Deadlock risk).

3. Stability Check: Watch for "Bang-Bang"
control (oscillating between min/max) .
Suggest smoothing or hysteresis.

4. DVM Compliance: Ensure all new variables

exist in the DVM.
5. Schema: Verify syntax.

Output a safe version of the leaf node.

The AS agent acts as the Chief Architect, balancing the
innovation of A3 with the safety requirements of A4.

A2. AxiomDSL Syntax and Core IR
Specification
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Listing 3. System Prompt for A4 Agent

You are the Chief Architect.
final decision.

Synthesize the ‘radical\_proposal' and
conservative\_review"'.

You make the

\

[DECISION LOGIC]:
1. Prioritize Validity:
crash (NaN,

The system must not

infinite loops).

2. Prioritize Performance: If Radical is
safe, prefer the innovation.

3. Ensure Mathematical Soundness: The logic

should align with the physics derived

in A3.

Ensure the ‘finall\_leaf' is valid JSON and

mathematically sound.

The AxiomDSL serves as a high-level declarative lan-
guage for scientific modeling, which is subsequently low-
ered into the Core Intermediate Representation (Core IR)
for automated reasoning and simulation. The IR is for-
mally defined as a recursive Directed Acyclic Graph (DAG),
G =(N,L,0,V, ), where every node is strictly typed and
grounded in the Domain Vocabulary Mapping (DVM).

The AxiomDSL (as seen in input_axioms_%. json) or-
ganizes domain knowledge into seven functional modules
to ensure a complete system description:

* params: Immutable global constants (€.g., Qpases Ap)
with mandatory bounds and default values.

» symbols: Dynamic variables categorized into state
(physical status), control (modifiable logic), and
aux (sensors).

¢ rules: Procedural logic containers using assign for
deterministic updates and guarded for conditional
interventions.

* stochastic: Probabilistic definitions (e.g., Poisson,
Normal) linked to physical rates.

e temporal: Global safety properties (L) and liveness
targets () defined via Linear Temporal Logic (LTL).

« fixpoints: Declarative evolution laws for iterative state
updates.

e boundary: Spatial constraints (e.g., dirichlet,
neumann) for field-based simulations.

In the physical field domain, the DSL defines the coefficients
of partial differential equations. The following example
demonstrates a pixel-level mapping of a diffusion axiom.
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AxiomDSL Representation:
a base thermal diffusivity «.

The original DSL specifies

{

"name": "alpha",

"type": "real",

"role": "control",

llunitll: llm‘z/sll’

"rhs": { "ref": "alpha_base" }

Evolved Core IR Representation: When the A3 Radical
Innovator applies an OP_TRANSFORW, the IR expands into
a complex recursive tree to model non-linear saturation:
Q@ = Qpgse * eXp(l-O - umean)~

{

"node_type": "Assignment",
"lhs": "alpha",
"rhs": |
"node_type": "OperatorNode",
"Op": "*",
"args": [
{ "node_type": "ReferenceNode", "ref
": "alpha_base", "meta": {"role": "
param"} 1},
{
"node_type": "FunctionNode",
"Op": "expll,
"args": [
{
"node_type": "OperatorNode",
"Op": Ilill,
"args": [
{ "node_type": "ValueNode", "
val": 1.0, "type": "real" },
{ "node_type": "ReferenceNode
", "ref": "u_mean", "meta": {"unit": "T
ll} }
]
}
]
}
]
}l
"provenance": { "agent": "

A3_Radical_Innovator",
OP_TRANSFORM" }

" op ne m

In the queueing domain, the IR must bridge discrete states
(Qien) with continuous service rates (u) while enforcing
liveness.

AxiomDSL Representation: The DSL defines a load-
dependent service rate.

{

"type": "assign",

"lhsll: "u",

"rhSII: { llop": lltanhll, llargsll: [ { llrefll:
"Q_len" } ] }
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} "desc": "Poisson arrival
rate"},
IIW nll: {"typell: llreal", llunit": "S
Lowered Core IR with Liveness Wrapper: The com- ", "roleM: fstatel, .
piler automatically injects a max operator to satisfy the Con- delay"} desct: Taverage queueing
. . . 14
trol Theory Guideline of preventing deadlocks (u > 0.1). // 27 additional symbols (see
{ supplemental material)
"type": "assign", }I
"lhs": "ull, "operators": {
"hs s { "sum" : {Ilsigll: ["real[}", "real"}, "
"node_type": "FunctionNode", unit": "auto"},
..Op..__..max.. "if": {"sig": ["bool", "real", "real
"args"- [ v "’ "real"] , "unit": "auto"}
{ "node type" . "ValueNode", "yalh // 15 additional Operators
0.1 1}, b .
{ "constraints": {
"node_type": "OperatorNode", "stability": "rho_tot < 1",
llopll ._"+ll "power_bounds ": "P_min <= P <= P_max"
"args": [' // 2 additional constraints
{ llref" . "mu pll’ llmetall . {"role" . }
"rate" } } , }
{ "Op": Iltanh", "args": [ {llref":
"Q_len"} ]} DVM Schema (Molecular Domain Exemplar)
]
} {
1, "domain": "molecular",
"metadata": { "is_liveness_critical": "symbols": {
true } "mw" : {"type": "real", "unit": "g/mol
} u’ "role": "state",
} "desc": "Molecular Weight"},
llqedll: {lltype": llrealll, "unit": lll", n
. . role": "metric",
To ensure sound symbolic execution, the IR maps all DSL "desc": "Drug-likeness [0,1]"}
primitives to rigorous mathematical functions. // 18 additional pharmacophore
descriptors
Category | IR Operator Symbolic Representati¢ 1},
Arithmetic | +, —, x, /, " a+ba—baxb g,a "operators": ["tanh", "sigmoid", "
Non-linear | exp, tanh, 1n, sqrt exp(z), tanh(z), In(z),l piecewise"” J"'
Statistics mean, SD, max, min E[X],0(X), max(X),n constraints": ({
" o o 1 "w. " = "
Temporal always, eventually | ¢, 0¢ lipinski mw": "mw <= 500",
Dynamics dt, laplacian, grad 2 2y "lipinski_hba": "num_h_acceptors <= 10"
) 9 67‘;7 )

/7

4 additional Lipinski rules

Table 3. Formal Mapping of AxiomDSL Operators to Symbolic }

Logic.

AxiomDSL Grammar v1.5 The grammar is defined as an
EBNF specification supporting arithmetic, trigonometric,
vector calculus (for PDE domains), and temporal operators.

A3. DVM and Grammar Specification

This section details the Domain Vocabulary Mapping
(DVM) schema. Each DVM is a JSON structure specifying
N (symbols with type/unit/role), O (operator signatures), T
(units), and ¢ (constraints). Exemplars for two domains are
shown below; full specifications for all eight domains are
provided in supplemental material.

DVM Schema (Queueing Domain Exemplar)

{

"domain": "queueing",

"symbols": {
"lambda_n": {"type": "real", "unit":
"l/S", "role": "rate",
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Key productions include:

axiom_file use_stmt*x symbol_stmtx
param_stmt*
rule_stmtx contract_stmtx

rule_stmt = assign | guarded | piecewise
| stochastic
| temporal | boundary
guarded = "when" bexpr ":" rule_stmt
pilecewise = "piecewise" "{" (bexpr ":"
expr) db vv}"
boundary = "boundary" (dirichlet|neumann

)
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Al (" axis nm_n value ll) n n . n
u_assign
temporal = ("always" | "eventually") " ("
bexpr W) T

// Full EBNF and 40 built-in operators in
supplemental material

Note on Reproducibility. = Complete DVM JSON
files (queueing, triage, software_opt, physical_fields, re-
source_allocation, co_simulation, evogym, molecular) and
the full fragment library (33 SMILES strings) are archived
in the supplemental material to ensure exact reproduction
of the experimental domains.
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Appendix B: Simulators and Details of
Experiments

BO0.1. Scaled Relative Advantage (SRA) Protocol

Unlike traditional Pareto ranking which requires multi-
objective vectors, we focus on the magnitude of frontier
expansion. We define the Baseline (G1) as the anchor point
(0.5) and the current State-of-the-Art (SOTA) as the effi-
ciency frontier (1.0). The Scaled Relative Advantage (SRA)
explicitly quantifies how far an agent pushes beyond this
known limit:
P, agent — P Gl

Sacent = 0.5 + 0.5 %
gent | Psota= — Pai

This metric serves as a proxy for Pareto Frontier Expansion:

* S > 1.0 confirms that the discovered axiom consti-
tutes a new Pareto optimal solution that strictly dom-
inates previous best-known methods.The P represent
the Physics Scores in each domain.

B0.2. Rationalization of Objective Physical Metrics
Physical Scores

To ensure a rigorous and unbiased evaluation of AutoAxiom
across heterogeneous domains, we distinguish between the
Iterative Reward (R) used for evolutionary guidance and
the Physical Score (Ps) used for cross-regime performance
benchmarking. The design of P; adheres to three funda-
mental principles of axiomatic discovery:Bounded Mono-
tonicity Mapping: All physical costs (e.g., waiting time
W,, error rate ER, or Ly error) are mapped into a dimen-
sionless utility space [0, 100] using the standard reciprocal
form 100/(1 + >_ Cost). This structure is widely utilized
in control theory to transform unbounded error norms into
bounded performance indices, ensuring that incremental im-
provements in near-optimal regimes are as visible as major
gains in high-error regimes.

Multiplicative Yield Logic (Non-Additive Coupling): For
multi-objective domains such as Software Optimization
(F3) and Molecular Design (F8), we employ multiplica-
tive composition (e.g., Ps x ® - (1 — ER)). Unlike additive
weights which allow a “’severe failure” in one dimension to
be masked by high performance in another, the multiplica-
tive form treats each metric as a logical gate. This mirrors
the “Effective Yield” principle in manufacturing and sys-
tems engineering, where a total system failure occurs if any
single axiomatic constraint is violated.

Physical Regularization and Anchoring: In domains involv-
ing numerical stability (F4) or synchronization (F6), coef-
ficients such as 0.1 - T'V are derived from Tikhonov Regu-
larization principles. These coefficients act as “anchoring
factors” that penalize non-physical chattering or systemic
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noise. To prevent bias, these coefficients were determined
during the baseline calibration phase (G1) and remained
invariant throughout the evolution of AutoAxiom, ensur-
ing that the performance gains stem from symbolic logic
innovation rather than parameter tuning.

B0.3. Sigmoid Normalization Protocol (S-Score)

While SRA provides an intuitive measure of frontier expan-
sion, it exhibits limited sensitivity when evaluating internal
architectural ablations where performance variances may be
non-linear or clustered near the baseline. To rigorously cap-
ture the contribution of individual axiomatic components,
we introduce the Sigmoid Normalization Protocol (S-Score)
for sensitivity analysis:

1

S:
1+ exp (72

(6)

. Ragenl _ Rbase
o

where Ry is the anchor reward derived from the G1 base-
line, and o is a domain-specific scaling factor that deter-
mines the sensitivity gradient. This protocol offers three
distinct advantages for ablation studies:

* High Midpoint Sensitivity: The S-Score is centered
at 0.5 when Rygene = Rpase. The high derivative of the
sigmoid function near this anchor point ensures that
even minor performance degradations caused by the
removal of a specific module are reflected as significant
numerical drops in the score.

» Saturation Awareness: In regimes approaching phys-
ical limits, the sigmoid curve naturally dampens
marginal gains, forcing the evaluation to focus on the
stability and robustness of the core axiomatic structure
rather than raw numerical outliers.

* Cross-Domain Calibration: By assigning domain-
specific o values (e.g., o = 500 for Triage vs. ¢ = 150
for Physical PDE), we normalize heterogenous reward
distributions into a unified [0, 1] interval, allowing for
the calculation of a robust Overall S-Score across all
six domains.

B0.4. Hyperparameters and Model Configurations

To ensure the reproducibility of the evolutionary trajectory
and the formal verification results, we provide the com-
prehensive hyperparameter suite used in the main.py or-
chestration and simulation adapters. All experiments were
conducted using the DSPy (v2.4.9) framework to manage
the tripartite agent interactions.

Dynamic Weight Scheduling As implemented in the
calculate_dspy_metric function, the coefficients for
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the dynamic objective function J(A) follow a non-linear
trajectory to balance exploration and stability:

* Violation Penalty (\,): \,(t) = Ao - e */Trise. No-
tably, for proposals achieving superior performance
(raw score > 10.0), a 0.2 x multiplier is applied to the
penalty to prioritize efficiency discovery.

* Persistence Reward (\,): \,(t) = Ag-(1—et/Totav),
ensuring the system prioritizes “white-box” robustness
in later generations.

* Diversity Reward (\g): \i(t) = Ag - max(0,1 —
2t ) effectively shifting the search from high-

Ttot,al
entropy jumps to local manifold refinement.

Diversity Metric The structural novelty Py;,, is calculated
by comparing the serialized byte-length of the proposed
AxiomlIR tree against the baseline structure:

. size 1 — SiZ€paseli
Pgir = min <1.0, | proposa ascline| x 2.0
S1Z€pgseline

(7N
Few-Shot Optimization We utilized the
dspy.BootstrapFewShot optimizer with

max_bootstrapped_demos=3. This allows the
system to autonomously extract and prepend successful ax-
iomatic modifications from the experiment_history
as contextual exemplars for the Radical and Conservative
agents in subsequent rounds.

B1. Customer Queue System

Background and Strategic Importance

Queueing systems serve as the foundational cornerstone of
operations research and the control nexus for modern large-
scale distributed architectures, high-frequency communica-
tion networks, and intelligent logistics systems. In these
highly stochastic physical environments, the core scientific
challenge lies in managing the delay explosion caused by
non-stationary stochastic processes.

In the environment defined by the F1 simulator, the system
must navigate a Pareto optimal solution between process-
ing power (resource energy consumption) and quality of
service (waiting latency). If the control axioms are too con-
servative, they lead to high hardware idle time and wasted
energy; if too aggressive, they risk non-linear divergence of
the queue length (Q)ey,) during sudden traffic spikes. The
scientific value of AutoAxiom lies in its ability to discover
evolved, symbolic control axioms with “adaptive resilience,”
providing the mathematical scaffolding for self-healing in-
frastructures.

Environmental Configuration and Execution Protocol
The F1 simulator is built upon the simpy discrete-event
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Table 4. AutoAxiom System Hyperparameters. Parameters are extracted directly from the operational implementation used to generate

the results in Section 4.

Category Parameter Notation  Value
LLM Configuration Underlying Model - gpt-4o
Sampling Temperature Tiim 0.9
Max Tokens (Generation) - 8,192
Reasoning Framework - DSPy
Evolutionary Control Total Rounds Tiotal 15
History Window [H| 5
Monte Carlo Runs Nme 100
Simulation Base Seed - 42
Annealing Schedule Base Scaling Factor Ao 100.0
Violation Penalty Decay Trise 3.0
Persistence Growth Lag Tstab 10.0
Objective Weights Performance Weight Wperf 1.0
Persistence Weight Wpers 1.5
Diversity Weight Wi 1.0
Compatibility Bonus Weomp 1.0
Normalization Safe Score Minimum Jmin -1,500.0
Safe Score Maximum Imaz 300.0

driving engine. To ensure absolute reproducibility and sta-
tistical rigor, all experimental groups (G1-G4) adhere to a
”Zero-Blackbox” simulation protocol:

* Multi-Seed Validation: Each experimental group is
subjected to 100 independent simulation runs (Seeds
42-141).

¢ Stochastic Modeling: Customer arrivals follow a Pois-
son process (Ap), and service times follow an exponen-
tial distribution with a rate v determined in real-time
by the active axiomatic logic.

* Control Granularity: The axiomatic logic performs
global sampling and state decisions every At = 0.5
seconds.

The table below discloses the complete initial physical pa-
rameters configured in the simulation engine:

Ap: 05571
Arrival Rate — Poisson arriva rate with a mean of
0.5.

1.5s71
Base Service Rate — Nominal system capacity (base-
line rate starting point).

Hpt

fmax: 5.0s7!
Maximum Capacity — Upper bound of the physical
hardware processing rate.
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[min® 1.0s7 !
Minimum Operation — Minimum rate required to
maintain system activity.

Pmax: 0.999
Saturation Threshold — Critical utilization threshold
for system instability.

At: 0.5
Control Step — Step size for axiomatic adaptive ad-
justment and decision.

Metrics and Reward

The simulator tracks seven core physical metrics in real-
time, forming the basis of the evolutionary fitness landscape.
All metrics are reported as the mean and 95% Confidence
Interval (CI) over 100 runs:

1. Wait Time (Wq): Average duration customers wait in
the buffer: % >~ (tstart,i — tarrival i)-

Occupancy (Lqayg): Average numper of customers, ver-
ified via Little’s Law: L = X, - Wj,.

Utilization (p): Load factor defined as p = A, /u.

Resilience (Res): Stability resilience index, calculated
as Res =1.0/(1.040.1- p).

Final Reward (Rgua): The ”North Star” metric for
AutoAxiom iteration:

Rﬁnal =0.7- Ps +0.3- Scuslom



AutoAxiom: Closed-Loop Framework for Autonomous Symbolic Axiom Modification via LLMs

Where Scusom 18 the self-defined logic score within the
axiom, weighting delay reduction (70%) and logical
rigor (30%).

Physics Score (F;): Standardized physical perfor-
mance score: Py = 100.0/(1.0 + W,).

Score (S): Normalized against G1 (Rpase) With o =
|Rbase‘-

Deconstruction of Experimental Regimes (G1-G3)
To contrast evolutionary advantages, we established three
highly persuasive benchmark groups:

* G1: Baseline (Static Open-Loop): u = 1,,. Repre-
sents primitive control without feedback, offering zero
defense against traffic pulses.

¢ G2: SOTA-II (Linear Lyapunov Feedback): uv =
Sat(pp + B - Quen ). Based on classical Lyapunov Sta-
bility Theory, it establishes linear feedback. While
convergence is guaranteed, it suffers from significant
response lag under non-stationary traffic.

¢ G3: SOTA-I (Industrial FCFS Stability): Utilizes a
fixed high-efficiency rate fine-tuned by experts, cou-
pled with strict FCFS hardware contention logic. It
represents the physical performance ceiling for tradi-
tional non-adaptive strategies.

G4: The Evolved AutoAxiom Logic

AutoAxiom (G4) broke free from the constraints of linearity,
self-synthesizing a composite physical system with percep-
tion, adaptive regulation, and defense layers.

Symbolic Physical Expression of G4:

u = Sat (Np “(P(p) + BQien)) - (1 + .%{Qlen>7—}) ®)

The parameters determined through evolution are:

 Non-linear Gain P(p): If p < 0.4, P = 1.05 (proac-
tive pre-clearing); if p > 0.6, P = 0.95 (robustness
smoothing).

* Feedback Coefficient 5: The system identified an
optimal fine-tuning coefficient of 0.02.

* Gated Defense v, 7: Detected a critical threshold 7 =
10. When Qien > 10, it triggers a pulse gain of v =
0.15.

Analysis and Inference

The experimental results in the Queueing (F1) domain re-
veal that the evolved G4 axiom represents a sophisticated
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Table 5. F1 Customer Queue: Performance Statistics (100 Runs)
Lyapunov (G2) FCFS-High (G3) AutoAxiom (G4)

Metric Baseline

Wy (s) 1.98 £ 0.03 1.95 4 0.02 0.99 £ 0.06 0.34£0.05
Layg 0.99 £ 0.02 0.98 £0.01 0.50 £ 0.03 0.17 £0.02
Physics Score  33.66 + 0.34 33.92+0.24 50.98 +1.25 76.53 +2.20
SRA Score 0.50 £0.01 0.51£0.01 1.00 £ 0.04 1.74+0.06

departure from traditional linear control paradigms. The
mathematical core of the G4 logic,

u = Sat(pp - (P(p) + BQien)) - (1 +7 - H10n>r1) 9

functions as a multi-tiered defense strategy rather than a
simple feedback loop. Unlike the Lyapunov-based SOTA
(G2), which relies on a rigid linear feedback gain (Qien/V)
that often reacts too sluggishly to initial backlogs or over-
compensates during transients, AutoAxiom discovered a
”’state-aware modal switching” logic.

By integrating a non-linear utilization sensor P(p), the
system proactively clears buffers when the load is low
(p < 0.4), preventing the initial accumulation that typi-
cally leads to downstream congestion. More significantly,
the autonomous discovery of the “High-Water Mark™ at
7 = 10 allows the system to remain energy-efficient during
normal operations while triggering a sharp 115% emergency
boost precisely when the queue enters the critical exponen-
tial growth phase. This synergistic combination of proactive
clearing and reactive pulsing results in an 82.8% reduction
in average waiting time. The fundamental inference is that
in stochastic environments, a non-linear, threshold-aware de-
fense mechanism is far more physically efficient and stable
than any uniform proportional response.

Real-world Applicability

The G4 axiom possesses immense potential for direct de-
ployment in high-stakes infrastructure, including edge com-
puting nodes, 5G base stations, and high-frequency trad-
ing gateways. While most modern adaptive controllers rely
on Deep Reinforcement Learning (DRL)—which functions
as a “’black box” and requires substantial computational
overhead for real-time inference—the symbolic G4 axiom
can be hard-coded directly into ASIC or FPGA logic as a
set of lightweight, deterministic “’if-then” instructions and
simple arithmetic gates.

This implementation ensures nanosecond-level execution
with near-zero computational cost and absolute auditability,
fulfilling the stringent requirements of telecommunication
standards and financial compliance. In a production data
center, for instance, this axiom would allow a load balancer
to manage unpredictable burst traffic with mathematical
certainty, effectively preventing the “tail latency” spikes
that degrade user experience. By bridging the gap between
high-level heuristic optimization and hardened industrial
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deployment, AutoAxiom provides a ’white-box”* control
law that is as interpretable as it is high-performing, making
it an ideal candidate for next-generation self-optimizing
networks.

B2. Hospital Service Center (Triage System)

Background and Strategic Importance

Hospital triage systems represent complex stochastic en-
vironments characterized by heterogeneous priorities and
preemptive resource competition. The primary operational
challenge lies in managing the conflict between “Critical”
and "Minor” patient flows. In high-pressure Emergency
Rooms (ER), critical patients are legally afforded absolute
preemption rights. However, if the axiomatic scheduling
logic is too rigid, it leads to a non-linear divergence in mi-
nor queues (Queue Explosion), which not only deteriorates
the waiting environment but also induces latent medical
risks. The objective of AutoAxiom is to evolve a non-linear
control law capable of dynamically balancing the “critical
lifeline” with overall system throughput.

Environmental Configuration

The F2 simulator is built on the simpy discrete-event en-
gine, modeling an overloaded emergency department. To
ensure full reproducibility, the physical boundary parame-
ters of the simulation engine are defined as follows:

e Arrival Process: Poisson-distributed arrivals with
Ae = 1.0s7! (Critical) and \,,, = 1.7s~! (Minor).

¢ Service Dynamics: ¢ = 2 medical resources (servers)
with a mean service efficiency of u = 1.0s™! per
resource.

¢ Preemption Logic: Enabled (Critical patients can in-
terrupt ongoing services for Minor patients).

* Execution Protocol: 100 independent trials (Seeds
42-141) with a physical duration of 7" = 1000s per
run to ensure steady-state evolution.

¢ Critical Safety Threshold: The target waiting time
for critical cases is set at 7.,.;+ = 30.0s.

Metrics and The Multi-Objective Reward Function
The simulator captures the following core metrics to define
the evolutionary fitness landscape:

* Wait Times (W,, W,,): The average queuing delays
recorded for Critical and Minor patients, respectively.

¢ Critical Coverage (C.,,): The ratio of critical patients
who successfully received service (mandatory safety
constraint: C\.,, > 0.9).
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¢ Critical Within Ratio (C,;,,): The proportion of crit-
ical patients whose wait time was within the 30.0's
threshold.

* Final Reward (R ;,4:): The core fitness function driv-
ing the evolution loop, calculated as:

Rtinar = 50.0-Clyin,+10.0-Crop, —1.0- W, —=5.0-W,,

* Physics Scores: 100 - C\.,,,/(1 + W) to reflect bal-
ance between Safety and Efficiency.

¢ Score (S): Given G1’s collapse (R ~ —990), we set
o = 500 (half the range of performance recovery).
Note: A penalty weight for W,,, (5.0) is five times
higher than that for W, to force the axioms to learn
how to suppress minor queue divergence.

Experimental Regimes (G1-G3)
We evaluate three baseline regimes to define the boundaries
of traditional scheduling:

¢ G1: Baseline (Static Preemption): Uses a static fac-
tor of 1.0. Due to absolute preemption, the minor
queue collapses (W,,, > 200 s), resulting in a massive
negative reward.

* Sotal (WSPT): Industrial standard using Weighted
Shortest Processing Time logic. It assigns a high
penalty weight (5.0) to minor cases to compensate
for their priority, representing the peak of static non-
adaptive optimization.

* Sota2 (Lyapunov Feedback): Employs linear feed-
back where the priority factor scales as 1.0 + SQien.
While it compresses W,,,, the linear growth lacks a
“saturation guard,” often causing fluctuations in critical
case certainty (W,).

G4: The Evolved AutoAxiom Logic
AutoAxiom (G4) discovered a sophisticated non-linear reg-
ulation law that transcends traditional linear logic:

m/1 /1
Priority Factor = 1.0+ 5.0 - tanh <W /100 + We/ 00)

2.0
(10)

The G4 regime utilizes a tanh activation function to
achieve modal switching: the system remains stable during
minor fluctuations but provides a non-linear, ”gated” pri-
ority boost during critical accumulation. This prevents the
minor queue from entering a divergent state while strictly
adhering to the critical case safety redline.

Performance Statistical Records (100 Runs)
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Table 6. F2 Triage System: Performance Statistics (100 Runs)

Metric Baseline WSPT (Sota 1) Lyapunov (Sota2)  AutoAxiom (G4)
We (s) 1.00 £ 0.02 0.99 +0.02 5.71 £ 0.50 1.00 +0.02
Wi (8) 209.7+4.9 2.77 4+ 0.08 0.62 +0.02 2.61 +£0.08
Crit Cov 0.998 + .00 0.998 £ .00 0.993 £ .00 0.998 + .00
Physics Score  0.75 £+ 0.01 32.07+0.29 28.35+1.11 33.09+0.34
SRA Score* 0.50 = 0.00 1.00 £ 0.00 0.94 +0.02 1.02+0.01

*Note: Standard SRA anchoring G1=0.5 and Best SOTA=1.0.

Inference and Conclusion

Analysis of the G4 regime reveals a 98.7% reduction in
minor queue latency (W,,,)2. The discovered axiom demon-
strates a “dynamic prioritization” property: by utilizing the
tanh activation function, the system remains dormant dur-
ing routine flows but provides a non-linear priority boost as
W, or W, approaches critical thresholds3.

Analysis and Inference

Compared to the academic authority Lyapunov (G3), G4
achieved a superior reward profile (59.98 4 0.00)4. Deriva-
tion from the physical expression reveals: G3 relies on
’passive response,” where priority scales linearly with queue
length; whereas G4 possesses “anticipatory balancing” ca-
pabilities, utilizing the bounded nature of the tanh operator
to prevent priority saturationS.

Real-world Applicability

The symbolic nature of the G4 axiom allows it to be directly
compiled into ultra-lightweight logical instructions and de-
ployed on ASIC chips for high-performance switches or
data center gateways. This logic, combining “crisis warn-
ing” with “adaptive regulation,” is the core scientific path
toward building future zero-cost inference and ultra-low
latency intelligent networks.

B3. Software Development Process
Optimization (Softwareopt)

Background and Strategic Importance

Modern software development is a complex adaptive sys-
tem where the primary scientific challenge lies in managing
the non-linear interplay between Feature Velocity and Sys-
temic Entropy. The F5 simulator environment models a
high-fidelity software lifecycle where developers must al-
locate a finite pool of effort (1) across multiple concurrent
modules. The core objective is to maximize the project’s
effective productivity while preventing the accumulation
of ”Technical Debt” (manifested as SD-Complexity) and
severe regressions (Error Rate). If effort allocation is too
conservative, development stalls; if too aggressive, the ”Bro-
ken Window Effect” triggers exponential error growth. Au-
toAxiom is tasked with discovering a governance axiom
that transcends reactive heuristics by sensing developmen-
tal "friction” and non-linearly modulating the intensity of
resource application.

Environmental Configuration

The F5 environment is a multi-agent, stochastic simulation
of a software ecosystem with the following boundary pa-
rameters:

* Project Scale: 10 parallel development modules with
non-uniform, stochastic task arrival rates.

e Systemic Decay: A baseline complexity drift simu-
lates code rot due to shifting requirements and library
dependencies.

* Simulation Protocol: 100 simulation cycles per trial,
executed over 100 independent trials (Seeds 42-141)
to ensure statistical convergence.

* Dynamic Constraints: A fundamental trade-off exists
where increased Progress Rate (®) induces a non-linear
penalty on SD-Complexity (o.) and Error Rate (F'R).

« Initialization: Module readability and consistency
are initialized within the [0.7,0.8] range to simulate a
healthy starting state.

Metrics and The Software Governance Reward Func-
tion

Performance is quantified via a multi-objective fitness func-
tion that rewards sustainable growth:

1. Avg_ProgressRate ($): The mean percentage of fea-
ture completion per unit time.

2. Avg SD_Complexity (c.): The standard deviation of
complexity across modules, representing the “entropy”
and lack of balance in development.

3. Avg_ErrorRate (E'R): The frequency of defect intro-
duction during the execution phase.

4. Avg_ W_H: The mean holding cost/waiting time for
feature delivery, representing systemic latency.

5. Physics Score (P;): The effective high-quality yield:
P;=100-®-(1—FER)-(1— o).

6. Final Reward: R,,rs = w1 - ® —wy -0, —w3- ER+
wy - C'Q), designed to penalize unhealthy” speed.

7. SRA Score (5): Normalized against the G; baseline
(0.5) and SOT A* (1.0).

Experimental Regimes (G1-G3)
* G1: Baseline (Static Resource Allocation): Employs

a fixed effort coefficient » = 0.1. This “open-loop”
approach is oblivious to the project state. While it
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maintains a low Error Rate, it results in a stagnant
Progress Rate (0.1002 £ 0.0008), leading to high sys-
temic latency and an inability to handle demand spikes.

¢ SOTA1: Velocity-Focused Heuristic (G2): A high-
intensity growth model focusing purely on throughput:
1N = Npase - (1 + k - ®). While achieving the highest
raw Progress Rate (0.9443 % 0.0004), it triggers the
“Technical Debt Trap,” resulting in a massive spike in
SD-Complexity (0.2669 + 0.0103) and an unsustain-
able Error Rate (0.1639 £ 0.0008).

¢ SOTA2: Balanced Agile Framework (G3): A linear
feedback model: 17 = Myase - (1 + 1P — Yy20.). This
proactive strategy attempts to “brake” when complexity
rises. It achieves a superior Reward (4.2314 4 0.0075)
compared to G1, but its linear nature makes it sluggish
during non-linear complexity explosions.

G4: The Evolved AutoAxiom Logic (Non-linear Friction-
Aware Law)

In Round 11, AutoAxiom discovered a sophisticated non-
linear friction-sensing governance law that identifies the
optimal “tipping point” between productivity and debt:

Nadj = Mbase - [V - log(1 + @) - sigmoid(C'Q — So.)]
Y]
Where ¥ represents a global momentum factor and C'Q) is
code quality.

Physical Inference: G4 evolved a Dynamic Entropy
Gate. The term log(1 + ®) accounts for the Law of Di-
minishing Returns in development effort. Crucially, the
sigmoid(C'Q — Po.) operator acts as a non-linear “Cir-
cuit Breaker.” When the system entropy (o.) outweighs
the quality-to-debt ratio, the sigmoid term collapses toward
zero, forcing an immediate transition into a “Refactoring
Phase.” This prevents the ”Broken Window” effect by proac-
tively dampening aggressive development before technical
debt reaches a point of structural collapse.

Performance Statistical Records (100 Runs)

Analysis and Inference: Optimal Control of Technical
Debt

G4, through its sigmoid damping, maintains the lowest
complexity dispersion (o, : 0.1742)6. This proves that
non-linear “refactoring gates” are more effective at main-
taining long-term project health than linear compensation
models (G3), representing a 10.5% improvement in systemic
entropy over the Agile-Linear baseline7.

Real-world Applicability: The discovered G4 axiom is di-
rectly applicable to Autonomous Project Governance and
AIOps Orchestration. By implementing this logic into De-
vOps control planes, organizations can automatically adjust
team “"WIP limits” or deployment gates based on real-time
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metrics of code complexity and quality. Its logarithmic-
sigmoid nature allows for a ’smooth-yet-decisive” resource
reallocation, ensuring that technical debt is serviced proac-
tively without the oscillating “firefighting” behavior seen in
traditional management.

B4. Physical Control (Numerical Heat
Conduction)

Background and Strategic Importance

Physical control systems, particularly in the context of nu-
merical simulations, require a delicate balance between com-
putational stability and physical fidelity. The F4 simula-
tor models a 1-D non-stationary heat conduction process
governed by the diffusion equation. The core scientific chal-
lenge is the dynamic selection of the diffusion coefficient
(av): it must satisfy the Courant-Friedrichs-Lewy (CFL) sta-
bility condition to prevent numerical divergence while mini-
mizing the Lo error relative to the physical ground truth. Au-
toAxiom’s goal is to evolve an adaptive control law capable
of sensing numerical instability “precursors” and adjusting
physical parameters to achieve Pareto optimality between
accuracy and stability. Environmental Configuration
The F4 environment is a discretized physical grid where a
high-intensity thermal pulse (v = 500) is introduced. The
simulation parameters are configured as follows:

¢ Grid Dynamics: 50 nodes with a spatial step of Az =
0.1.

» Simulation Scope: 100 time steps per trial, executed
over 100 independent trials (Seeds 42—141).

¢ Base Physics: Nominal diffusion coefficient apqse =
0.01.

* Numerical Constraint: The system monitors the CFL
number; if a- At/ Ax? exceeds 0.5, a complete stability
penalty is applied.

Metrics and The Physical Reward Function
Performance is evaluated across five physical dimensions to
determine evolutionary fitness:

1. Lo Error (E12): The root-mean-square deviation from
the ideal physical state.

Total Variation (7'V): Measures numerical oscilla-
tions; higher values indicate non-physical instability.

Max Gradient (V,,,.): The peak temperature slope,
indicating localized stress on the numerical scheme.

Physics Score (P;): The physical fidelity index: P; =
100/(14+ Er2 +0.1-TV).
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Table 7. F3 Software Optimization: Performance Statistics (100 Runs)

Metric Baseline Heuristic (G2) Agile-Linear (G3) AutoAxiom (G4)
Avg Progress Rate  0.10 + 0.00 0.94 +0.00 0.89 +0.00 0.90 +£0.00
Avg Error Rate 0.10 + 0.00 0.16 +0.00 0.09 +0.00 0.09 +£0.00
SD Complexity 0.21 +0.01 0.27 +0.01 0.19 +0.01 0.17 +£0.01
Avg W_H 5.55 +0.01 6.74 +0.02 5.38 +0.01 5.55+ 0.01
Physics Score 7.164+0.13 57.88+0.55 65.02 £ 0.83 67.46 - 0.84
SRA Score 0.50 4+ 0.00 0.94 £ 0.00 1.00 £ 0.01 1.02 +0.01
5. Final Reward: R, = —(Er2 + 0.1 -TV +

Penalty) x 1071, enforcing stability-first control.

6. SRA Score (S): Normalized against the GG; baseline
(0.5) and SOT A* (1.0).

Experimental Regimes (G1-G3)

¢ G1: Baseline (Static Fourier’s Law): Uses a fixed
a = 0.01. This regime fails to adapt to the high-
gradient thermal pulse, leading to significant Lo errors
(151.31 £ 1.08) and high T'V due to unmanaged oscil-
lations.

¢ SOTA1: Industrial PD Control (Conservative): A
robust engineering standard utilizing a proportional-
derivative law with a strict safety clamp: «
min(0.05, apgse + Kpt + KqVimas). While stable,
the 10% safety margin (clamping at « = 0.05) limits
its cooling throughput.

* SOTA2: Classical Physical Linear Model: A first-
order adaptive feedback law: @ = apgse - (1 4 0.01 -
Umean ). By sensing the mean energy level, its accuracy
improves but remains vulnerable to localized gradient
spikes.

G4: The Evolved AutoAxiom Logic (Non-linear Satura-
tion Law)

AutoAxiom (G4) discovered a sophisticated non-linear cou-
pling logic in Round 15 that utilizes a saturation-based mech-
anism to safely approach the physical limit:

Qgdj = Qpgse * [Epot : tanh(ﬁla + Bvaax)] (12)
Where the evolved coefficients leverage the system’s po-
tential energy (F,) to drive diffusion while maintaining
stability via the hyperbolic tangent operator.

Analysis and Inference: The Physics of Evolved Stability
The G4 regime achieves a 76.4% reduction in L, Er-
ror compared to the industrial SOTA1. The fundamental
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Table 8. F4 Heat Conduction Control: Performance Statistics (100
Runs)

Metric Baseline PD-Control (G2) Linear-Adapt (G3) AutoAxiom (G4)
L Error 1513+ 1.1 44.97+£1.5 108.3+ 1.5 10.60+-0.83
CFL (x107%)  0.51 4 0.00 2.56 + 0.06 0.93 £0.02 5.09+£0.13
TV 536.3 £5.5 142.3 £ 4.7 351.84+5.6 33.51 £2.61
Max Grad 1475+ 13 510.9 £ 11 1192 + 6.4 120.9+8.1
Physics Score  0.49 + 0.00 1.66 + 0.05 0.69 4 0.01 6.69 +0.34
SRA Score 0.50 & 0.00 1.00 & 0.02 0.59 & 0.00 3.14+0.15

inference is that G4 has successfully closed the gap be-
tween conservative engineering and the theoretical physical
limit. By maintaining a mean CFL of ~ 0.051 (nearly
double that of SOTA1), G4 demonstrates the ability to op-
erate safely within the high-performance regime that tra-
ditional controllers discard as “risky.” The significantly
lower TV (33.51 4= 2.61 vs 142.29 4 4.73) proves that G4s
soft-saturation strategy suppresses the numerical chattering
common in linear-plus-clamp systems.

Real-world Applicability: G4’s discovered axiom is highly
applicable to smart thermal materials and HPC physical
solvers. Its symbolic, non-linear form can be directly im-
plemented as a constitutive law in phase-change heat sinks
or adaptive CFD meshes. Unlike black-box neural solvers,
its mathematical structure provides an explicit guarantee
of boundedness via the tanh operator, making it suitable
for safety-critical thermal management in aerospace and
semiconductor cooling.

BS. Resource Allocation (Dynamic Computing
Nodes)

Background and Strategic Importance

Resource allocation systems represent a fundamental opti-
mization challenge in distributed computing and cloud in-
frastructure. The core scientific conflict lies in the trilemma
between Throughput (efficiency), Makespan (completion
time), and Fairness (load balancing). In a multi-tenant
cloud node with finite capacity, static or purely greedy al-
location logic either starves heavy tasks or underutilizes
hardware during demand volatility. AutoAxiom’s objective
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is to discover a non-linear allocation axiom that dynami-
cally adjusts resource quotas based on system stress and
cost boundaries to maximize global utility.

Environmental Configuration
The F5 simulator models a high-concurrency task process-
ing node with the following physical parameters:

» Task Load: 20 heterogeneous tasks with varying work-
loads (W;4s1) arriving in a burst mode.

* Resource Capacity: Total physical capacity R, =
100.0 units.

¢ Cost Factor: Operational cost penalized by a factor
Tlcost = 0.1.

* Execution Protocol: 100 independent trials (Seeds
42-141) to ensure statistical significance and capture
stochastic performance.

¢ Allocation Constraint: A hard hardware limit of
>~ alloc; < Ry is enforced.

Metrics and The Multi-Objective Reward Function
The performance is evaluated across six core dimensions to
determine evolutionary fitness:

* Throughput (®): Total tasks completed per unit time.

¢ Makespan ()M): Total time taken until the final task is
completed.

¢ Load Balance Std (L B): Standard deviation of com-
pletion times, reflecting system fairness.

* Physics Score (Ps): The task execution efficiency:
P, =100-®/(M - (1+ LB)).

* Final Reward: R, = (5.0- ® —0.5- M — 10.0 -
LB —0.1-Cost) x 1072.

¢ SRA Score (5): Normalized against the GGy baseline
(0.5) and SOT A* (1.0).

Experimental Regimes (G1-G3)

¢ G1: Baseline (Static Proportional): Allocates re-
sources strictly proportional to task utility without sens-
ing load. This leads to the lowest throughput (10.95)
and the longest makespan (4.75s).

¢ Sotal: JSQ (Join-the-Shortest-Queue): Focuses on
absolute fairness (LB = 0.00). While it eliminates
variance, it severely limits total system throughput
compared to adaptive methods.
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e Sota2: Min-Min Scheduling: A greedy strategy pri-
oritizing small tasks. It improves throughput over G1
but results in high load imbalance (0.85) and delayed
completion for heavy tasks.

G4: The Evolved AutoAxiom Logic (Boundary-Aware
Scaling)

AutoAxiom (G4) discovered a multi-stage non-linear scal-
ing axiom that utilizes tanh and exp operators to sense
operational cost boundaries:

4 - etanh(P/50) if Cost < 15
AF = { 3. ¢tanh(LB/0.1) if 15 < Cost < 40 (13)
mean(®, M/10)/1.3 if Cost > 55

Inference: G4 identifies the "Diminishing Returns” zone.
It employs aggressive scaling in low-cost states to boost
throughput and switches to stability-focused regulation in
high-cost states to prevent system-wide congestion.

Performance Statistical Records (100 Runs)

Table 9. F5 Resource Allocation: Performance Statistics (100

Runs)
Metric Baseline JSQ-Fair (G2) Min-Min (G3) AutoAxiom (G4)
Makespan (s) 4.75+£0.14 1.09 4+ 0.02 2.87+£0.04 1.19+0.04
Throughput 10.95+0.26  18.52+£0.35 15.18 £0.25 43.79 £1.02
Load_Bal_Std 1.47 £ 0.06 0.00 £ 0.00 0.85 4+ 0.02 0.37+£0.01
Cost_Penalty 0.05 £ 0.00 0.05 £ 0.00 0.05 £ 0.00 0.05 £ 0.00
Physics Score  93.38 £3.13  1700.3 £ 35.9 286.1+5.3 2698.6 +121.5
SRA Score 0.50 £ 0.00 1.00 +0.01 0.56 £ 0.00 1.31+0.04

Analysis and Inference: The Physics of Evolved Alloca-
tion

The G4 regime achieves a 133% improvement in Final
Reward over the best performing SOTA (Sotal). The fun-
damental inference is that optimal scheduling is not a binary
choice between fairness and throughput, but a dynamic
negotiation within the system’s non-linear ”Cost-Ultility” en-
velope. By allowing a marginal increase in imbalance (0.37)
compared to the rigid Sotal, G4 unlocks massive gains in
throughput (43.79), effectively capturing the Pareto front of
resource management.

Real-world Applicability: The symbolic
G4 axiom is ready for implementation in
Kubernetes Horizontal Pod Autoscalers (HPA) and

Edge Schedulers. Its "white-box” nature allows engineers
to verify safety constraints while benefiting from zero-
latency adaptive logic that is significantly more performant
than standard heuristics like Round-Robin or Max-Min
Fairness.

Robustness and Generalization Analysis

To verify that the evolved G4 axiom represents a generalized
physical control law rather than a numerical over-fitting to
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specific parameters(15/40/55), we conducted a series of
multi-scenario stress tests. We utilize a Scenario-Adaptive
SRA protocol where the Baseline (G1) is anchored at 0.50
and the best-performing SOTA in each specific environment
is anchored at 1.00 to serve as the local efficiency frontier.
This relative normalization ensures that the score reflects the
expansion of the Pareto front within each unique physical
regime.

Table 10. Robustness Performance (SRA Score S). GG1: Base-
line, G2: JSQ, G3: Min-Min, G4: Ours (AutoAxiom). All scores
represent the normalized physical utility index P, with 95% confi-
dence intervals.

Scenario G1 (Base) G2 (SOTA-1) G3(SOTA-2) G4 (Ours)

S1: Standard 0.500 +£.002  1.000 £.021  0.558 &.003 1.892 £ .076
S2: Scarcity 0.5004+.001  1.000 £.020  0.5294.002 1.401 & .058
S3: Load Stress  0.500 £.002  1.0004+.011  0.536 £.002 3.846 +.084
S4: Imbalance 0.500+.001 1.000+.024 0.5164+.001  0.764 £ .036
S5: Scale Stress  0.500 +£.004  1.0004+.023  0.596 +£.004 2.368 +.089

Stressor Params: S1(R100, W[1,10]), Sa(R30), S3(W [20, 50]), S4 (W1, 50]), S5 (R2000).

Physical Interpretations of Stress Scenarios (57-S55)

The robustness evaluation is anchored in five distinct physi-
cal regimes:

Standard Operations (S7): Models a routine
cloud node state with balanced resource redundancy
(Rmaz = 100), establishing the baseline efficiency
frontier.

Extreme Capacity Scarcity (S2): Simulates a 70% in-
frastructure capacity loss (R = 30). This scenario tests
the ”Safety Margin” of the G4 axiom and its ability to
maintain high relative efficiency through autonomous
resource contraction.

High Load Stress (53): Mimics a heavy task burst en-
vironment (W € [20, 50]). This evaluates the axiom’s
”Processing Bandwidth” and whether its non-linear
scaling can prevent completion time divergence under
massive workloads.

High Imbalance Stress (5;): Reflects extreme task
heterogeneity (W € [1, 50]). This regime tests the sys-
tem’s “Fairness Resilience,” evaluating if the allocation
logic can handle a 50-fold variance in task scales.

¢ Large Scale/Costly (S5): Simulates a massive-scale
infrastructure (R = 2000). This scenario triggers the
high-cost axiomatic gating logic, verifying the effec-
tiveness of the discovered phase-transition boundaries
(15/40/55) for large-system stability.

Key Insights and Inferences

The experimental results demonstrate that G4 captures the
non-linear ”Cost-Utility” envelope with high fidelity across

diverse stress regimes. In S5 (Load Stress), G4 achieves a
clear SRA score of 3.846, indicating that the evolved non-
linear scaling is significantly more effective than traditional
JSQ in handling heavy-duty task bursts. This confirms that
the discovered symbolic structure is not mere parameter
fitting but a robust control law for high-load regimes.

In S; (Imbalance), we observe a fundamental trade-off
where G4 yields the frontier to G, (S = 0.764), as the ax-
iom prioritizes global throughput over extreme fairness in
highly skewed distributions. However, the consistent domi-
nance of G4 in S1, S5, S3, and S5 proves that its discovered
logic (e.g., the tanh-gated scaling) acts as a robust phys-
ical law. By autonomously switching between aggressive
exploitation and protective regulation, AutoAxiom achieves
a Pareto-optimal resilience that remains structurally absent
in static or purely greedy scheduling logics.

B6. Service Composition (Cyber-Physical
Co-Simulation)

Background and Cyber-Physical Context

The F6 domain represents the most complex environment
in the current benchmark, transitioning from single-node
optimization to a Closed-Loop Cyber-Physical Feedback
System. This domain models the intricate synchronization
between a discrete-event computing queue (the Cyber do-
main) and a stochastic thermodynamic core (the Physical do-
main). The “composition” challenge here is to dynamically
orchestrate the service frequency (u) in response to thermal
fluctuations (7,.) to prevent hardware overheating while
maintaining task throughput. Unlike traditional service se-
lection, this requires balancing the non-linear thermal in-
ertia of physical hardware with the bursty stochasticity of
Poisson task arrivals.

Environmental Configuration
The co-simulation environment is governed by a set of cou-
pled stochastic differential equations and discrete events:

¢ Queue Subsystem: Modeled with an arrival rate \;,, =
8.0 and a base service rate (e = 10.0.

* Thermal Subsystem: Governed by cooling coeffi-
cients (0.15) and heat generation rates (0.8), with a
safety threshold 7;,,,, = 85.0°C.

¢ Simulation Scope: 100 independent trials (Seeds 42—
141) with a duration of 7' = 1000 to capture long-term
stability and synchronization drift.

Metrics and The Synchronization Reward Function
The performance of the composition axioms is quantified

by their ability to maintain inter-domain equilibrium:

* SyncError (E;y,.): The product of the standard devia-
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tions of T and Qjen, representing the magnitude of
chaotic oscillations between the computing and physi-
cal domains.

¢ Contract Satisfaction (C,,;): The ratio of total simu-
lation time where the core temperature remains within
safe operational bounds (T¢ore < Tiarget)-

» Physics Score (P;): The system stability index: P; =
100/(1 + Esyne + Lat).

* Final Reward: R..,, = (100 - Csq; — 2 - Lat — 10 -
Esyne) x 1071,

* SRA Score (S): Normalized against the GG; baseline
(0.5) and SOT A* (1.0).

Experimental Regimes (G1-G3)

¢ G1: Baseline (Static Coupling): Uses a fixed linear
mapping (Trnput X Qren) Without active frequency
scaling. Under high loads, this leads to thermal run-
away or queue explosion.

¢ Sotal: PID Feedback Control: An industrial stan-
dard employing Proportional-Integral-Derivative logic
(K, = 0.8, K; = 0.05, Kg = 0.1) to adjust x based
on thermal error.

e Sota2: Linear State Feedback: A proactive law uti-
lizing a weighted sum of T, and Q.. to regulate
the system, representing classical control theory.

G4: The Evolved AutoAxiom Logic (Nonlinear State
Coupling)

AutoAxiom (G4) discovered a sophisticated non-linear cou-
pling law that replaces traditional historical-error tracking
with instantaneous state-dependent scaling. The evolved
physical expression for the service rate p is:

Performance Statistical Records (100 Runs, Round 4)

Table 11. F6 Cyber-Physical Composition: Performance Statistics
(100 Runs)

Metric

Baseline PID-Control (G2) Linear-State (G3) AutoAxiom (G4)

SyncError 33.27 £ 1.56 0.26 4+ 0.02 5.06 £ 0.10 0.29 4 0.00
Latency (s) 0.023 £ 0.00 0.000 & 0.00 0.002 £ 0.00 0.27 £ 0.00
Clsat (Ratio) 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00
Physics Score 2,92 4 0.11 79.19 +£0.83 16.50 £ 0.23 63.84 1+ 0.56
SRA Score 0.50 + 0.00 1.00 £ 0.01 0.59 + 0.00 0.90 £0.00

Analysis and Inference: Efficiency of Evolved Symbolic
Control

In this high-fidelity co-simulation, the industrial PID con-
troller (Sotal) maintains its status as the performance
benchmark, particularly in its ability to force the system
into a near-zero queue state with minimal latency. How-
ever, the evolved AutoAxiom (G4) exhibits advantages in
its mathematical formulation:

 Stability Parity: G4 achieves a synchronization error
(0.29) that is functionally equivalent to the fine-tuned
PID (0.26), demonstrating that an evolved symbolic
law can reach industrial-grade stability.

* Stateless Execution: Unlike PID, which requires his-
torical error integration (K;) and differentiation (K ),
G4 is a memory-less symbolic function. This makes
it far more resilient to historical noise propagation and
simpler to implement in hardware-level logic (ASIC/F-
PGA).

* Energy-Aware Damping: G4 evolved a "Conservative
Thermal Buffer,” allowing a moderate queue length
(2.22) to naturally dampen thermal intensity, whereas
PID consumes excessive control effort to clear even
minor stochastic bursts.

[ = max (0.1, 10.0 + [0.5 +0.1- e (@en=501 tanh (T suﬂnm}) AutoAxiom achieves SRA = 0.90, competitive

(14)
Physical Analysis:

* Thermal Saturation: The use of the tanh operator
allows the system to sense the temperature gradient
relative to the ambient environment. As 1, rises, the
service rate is non-linearly throttled to prevent thermal
saturation.

¢ Load-Aware Exponential Damping: The term
e~ (Qien—5.0) acts as a ”load sensor.” When the queue
length is small, the system maintains high frequency
for performance; as Q;e,, exceeds the threshold, the
service rate is exponentially damped to reduce heat gen-
eration, effectively preventing thermal runaway before
the safety contract is violated.
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with but not exceeding the strongest PID baseline (SRA =
1.00) under the SRA normalization protocol. The Physics
Score (63.84) reflects a performance trade-off inherent in
abandoning historical error integration. However, the sym-
bolic axiom offers distinct operational characteristics that
prioritize interpretability and stateless execution over raw
synchronization performance.

Real-world Applicability: While PID remains ideal for
high-precision local loops, the G4 axiom offers a ”White-
Box” alternative for large-scale distributed compositions
where tracking error history for thousands of sub-services is
computationally prohibitive. G4 provides an interpretable,
zero-latency synchronization law optimized for Real-time
SoC Power Management and Green Data Center Orchestra-
tion.
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B7. Soft Robotic Locomotion

Background and Voxel-Based Physics Context

The EvoGym domain models a soft robotic system com-
posed of discrete voxel elements, where locomotion is
achieved not through rigid joints, but via the volumetric
expansion and contraction of actuated voxels. The robot, a
1 x 5 soft lattice, operates in a physics engine that simulates
continuous deformation, surface friction, and fluid drag. The
core control challenge lies in synthesizing a distributed ac-
tuation signal u(t, ) for each voxel to generate coordinated
peristaltic gait. The control law must be terrain-adaptive,
modulating its frequency (w) and amplitude (A) to traverse
heterogeneous environments without proprioceptive sensors
(e.g., cameras), relying solely on local state variables like
velocity (v), contact forces (F.), and structural strain.

Environmental Configuration and Terrain Segmentation
To rigorously evaluate adaptability, the simulation environ-
ment is segmented into three distinct 10m zones, each im-
posing unique physical constraints:

e Zone I: Flat Ground (0-10m): Characterized by stan-
dard kinetic friction (14, = 1.0) and a nominal damping
coefficient (d = 0.1). This zone serves as the control
group to evaluate the baseline metabolic efficiency and
steady-state velocity of the robotic gait.

e Zone II: Ice Surface (10-20m): This zone introduces
a low-friction singularity (ux =~ 0.1, d = 0.1). The
primary challenge is traction loss. Under traditional
open-loop control, aggressive actuation leads to ”voxel-
slip” (wheel-spin), where energy is rapidly dissipated
into the environment without generating forward mo-
mentum, often leading to total kinetic stall.

e Zone III: Mud Pit (20-30m): Characterized by
high viscosity and a significant damping coefficient
(d 2.0). It introduces a non-linear drag force
Firag o< —v?. The scientific challenge here is power
delivery; conservative strategies that work on ice fail
to overcome the yield stress of the mud, causing the
robot to sink or stall.

Simulation Scope: 100 independent trials (Seeds 42—141)
are executed per Round, with stochastic perturbations in
initial robot posture and terrain roughness (£10%) to ensure
robust evolutionary discovery.

Metrics and Physical Reward Function
Performance is quantified using a composite physics-
informed reward function:

* Traversal Time (7.,,.): The time required to clear
each 10m segment.
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e Energy Cost (E;,.4;): The integral of actuator work
W = [ |u(t) — 1.0|dt.

* Slip Penalty (S5;,): Cumulative time where voxel
velocity exceeds centroid velocity (wasted motion).

¢ Score: Normalized Pareto score against the PPO base-
line (R ~ 500).

Baseline Definition (Round 0)
The evolutionary starting point (G1) is a naive Open-Loop
Traveling Wave, representing the standard ”Sine-Gait” used
in soft robotics literature. It lacks any sensor feedback
mechanisms.

u(t,z) = 1.0 4+ upgse - sin(wt — Kx) (15)
Where upqse = 0.8 determines the expansion amplitude,
w = 4.0 is the temporal frequency, and x = 2.0 is the
spatial wave number governing the gait’s wavelength. While
effective on flat ground (12.05s), it fails on Ice (39.92s) due
to its inability to sense or react to traction loss.

B7.1. Evolutionary Performance Matrix

Table 12 presents the full statistical breakdown of the evolu-
tionary trajectory. Note the non-monotonic progress, illus-
trating the system’s navigation through local optima (R1)
and infeasible solutions (R3).

B7.2. Axiomatic Forensics and Round Analysis

Round 1: The Conservative Trap (Anti-Slip Negative
Feedback)
Evolved Axiom:

u(t) = 1.04-clamp (upgse — 0.5 - slip, 0.1, 1.0)-tanh(sin(wt—~xx))

(16)
Detailed Analysis: The system’s first innovation was the in-
troduction of a negative feedback loop: ugyy,;, o< —0.5 - slip.
Physically, this mimics a traction control system (TCS) in
automobiles. On Ice, this logic successfully detected wheel-
spin and throttled the actuation amplitude, improving traver-
sal time from 39.9s to 29.2s. However, this created a fatal
flaw in the Mud zone. The high viscous drag of the mud
prevents rapid forward motion, which the simplistic ‘slip*
sensor misinterpreted as a loss of traction. Consequently,
as the robot encountered resistance in the mud, the axiom
aggressively reduced power (to the lower clamp limit of
0.1), effectively causing the robot to ’choke” itself. This
illustrates a classic local optimum where optimizing for sta-
bility (Ice) compromises power delivery (Mud), leading to
a regression in Zone 3 (47.67s).

Round 3: Numerical Hallucination (Physics Engine Ex-
ploit)
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Table 12. The Phylogeny of Control in EvoGym. Data reported as Mean & 95% CI.

Metric Baseline (R0) Round 1 Round 3 Round 6 Round 8 Round 9 (Ours) \ PPO (RL)
Zone 1: Flat Ground

Time (s) 12.05+0.81 3.08+0.44 0.86+0.00 80.00£0.00 5.10=+0.90 4.154+0.16 2.20 +0.00
Energy (J) 3950 + 222 837+ 116 29740 2538+ 1 1147 4+ 193 738 + 27 219 +0.03
Zone 2: Ice (Low Friction)

Time (s) 39.92+1.14 29.25+2.06 0.22+0.00 - 52.12+1.28 0.67 +0.05 1.10 £+ 0.00
Energy (J) 119524308 7416 £ 515 57+0 — 10906 £ 271 131+9 108 £ 0.01
Zone 3: Mud (High Drag)

Time (s) 28.03£0.76 47.67+2.26 1.20=+0.01 — 22.79 £1.03 1.53 +£0.10 1.194+0.01
Energy (J) 8538 +£226 12053 + 571 386 +1 - 4802 + 215 342 + 21 119+ 0.53
Status Open-Loop  Conservative Hallucinated Crash Oscillatory Optimal \ Black-Box

Evolved Axiom:

Apmod = clamp (— exp (—(upase — 0.3 - slip)), 0.1, 1.0)

Qmod = clamp (w — 0.2 - Feontact, 1.0, 4.0)

u(t) = 1.0 + Apoq - tanh(sin(Q,0q - t — k)

a7

Detailed Analysis: Round 3 achieved impossibly low traver-
sal times (0.22s on Ice). Upon forensic analysis, we identi-
fied this as an adversarial attack on the simulation’s numeri-
cal integrator. The axiom evolved a nested exponential term
coupled with force feedback (w — 0.2F .y 4c¢) that gener-
ated ultra-high-frequency, high-jerk actuation signals. These
signals operated faster than the physics engine’s time-step
(At), causing the solver to produce “teleportation-like” arti-
facts where the robot accumulated massive velocity without
realistic energy expenditure. While mathematically valid
within the reward function, such control laws are physically
infeasible (requiring infinite motor torque) and were subse-
quently flagged by the Verifier’s ”Actuator Strain” constraint
in later rounds.

Round 6: Semantic Collapse (The ”’Valley of Death”)
Evolved Axiom (Fragment):

u(t) = - - -+Gaussian(sensor_noise.mean, sensor_noise.std) . . .

(18)
Detailed Analysis: In an attempt to improve robustness
against environmental stochasticity, the Radical Agent pro-
posed injecting noise directly into the control signal. How-
ever, the LLM hallucinated the symbols ‘sensor noise.mean’
and ‘sensor noise.std‘, which were not defined in the Do-
main Vocabulary Mapping (DVM). This represents a ~’Se-
mantic Collapse,” where the generated logic is syntactically
correct (valid Python) but semantically void within the phys-
ical context. The execution resulted in a runtime exception,
causing the robot to remain stationary (Time = 80.0s),
serving as a critical reminder of the necessity for strict onto-
logical grounding in symbolic evolution.

Round 8: Oscillatory Over-Correction (Brute Force
Strategy)
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Evolved Axiom:

u(t) = 1.04clamp (tanh(upgse — SHP - Uuncert), 0.1, 1.0)-tanh (sin(wt—rka

19)
Detailed Analysis: Reacting to the “choking” failure of
Round 1, the system swung to the opposite extreme. It re-
moved the conservative damping and introduced a stochastic
uniform distribution term Uy, ,cer¢ to “jitter” the robot out of
stuck states. While this brute-force approach successfully
powered through the Mud (22.79s), it proved disastrous on
Ice. The lack of precise, deterministic slip-control caused
the robot to oscillate wildly, spinning its voxels without gain-
ing traction, resulting in a significant regression (52.12s).
This Round highlights the oscillatory nature of evolutionary
search when the system lacks a mechanism to distinguish
between conflicting environmental states (High Friction vs.
Low Friction).

Round 9: The Synergistic Synthesis (State-Aware Opti-
mal Control)
Evolved Axiom:

w’" = if (is_contact == 1.0, w, 0.5)

Agdapt = clamp (tanh(upgse — SHp - ffric), 0.1, 1.0)

u(t) = 1.0 + Agdapt - tanh(sin(w't — kx))

(20)

Detailed Physical Mechanism and Real-World Applica-
bility:
The Round 9 axiom represents the convergence of physical
understanding, integrating two key discoveries that allow it
to outperform even the PPO baseline on Ice:

* Discovery 1: Contact Gating (The “Energy
Switch”): The term if (is_contact, w, 0.5) embodies
the physical realization that actuation while airborne
is futile. By reducing the frequency to an idle state (0.5)
when contact is lost, the robot saves massive amounts
of energy and prevents self-induced instability upon
landing. This logic is akin to biological "phase reset-
ting” seen in animal locomotion.
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e Discovery 2: Friction-Aware Damping: Unlike
Round 1 (fixed damping) or Round 8 (random noise),
R9 scales its damping by the environmental friction
coefficient: slip - i ¢4c. This allows the controller to
dynamically stiffen in Mud (where 1 is high, allowing
for power) and soften on Ice (where p is low, requiring
gentleness).

Mechanism of Advantage vs. PPO: AutoAxiom achieves
a traversal time of 0.67s on Ice compared to PPO’s 1.10s.
We hypothesize this is because the symbolic ‘clamp‘ and
‘tanh‘ functions provide perfect analytical boundaries to
the actuation signal. In contrast, the neural network of PPO
can only approximate these hard constraints via continuous
activation functions, leading to micro-oscillations and resid-
ual slip that accumulate latency over time.

Real-World Deployment: The R9 axiom is exceptionally
suitable for deployment on low-power, embedded micro-
controllers (e.g., Arduino/STM32) for soft robots. Unlike
PPO, which requires matrix multiplication hardware for in-
ference, R9 requires only basic arithmetic and conditional
logic, enabling kHz-level control loops with milliwatt-scale
power consumption. Furthermore, the explicit safety bounds
inherent in the formula provide the interpretability required
for safety-critical check.

B7.3. SOTA Baseline: Deep Reinforcement Learning
(PPO)

To establish a rigorous performance benchmark, we trained
a Deep Reinforcement Learning (DRL) agent using Prox-
imal Policy Optimization (PPO), widely considered the
state-of-the-art for continuous control tasks. Unlike Au-
toAxiom, which evolves explicit symbolic equations, PPO
optimizes a neural network policy 7g(a|s) to maximize ex-
pected cumulative reward.

B7.3.1. ALGORITHM AND HYPERPARAMETER
CONFIGURATION

We utilized a standard Actor-Critic architecture imple-
mented in PyTorch. The agent interacts with the exact
same physical environment as AutoAxiom, including the
0.1% stochastic perturbation to mass and actuator strength
to ensure a fair "Robustness-to-Noise” evaluation.

The network consists of two separate Multi-Layer Percep-
trons (MLPs) for the policy (Actor) and value function
(Critic), using orthogonal initialization and Tanh activa-
tions. The detailed hyperparameter configuration, extracted
directly from the execution source code, is reported in Table
13.
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B7.3.2. TRAINING DYNAMICS AND CONVERGENCE

The training process exhibited rapid convergence, demon-
strating the learnability of the environment. As visualized in
Figure 5, the agent solved the basic locomotion task within
the first 10 updates and reached a performance plateau
around Update 100.

Exploration Decay Value Function Convergence

o
3,

Policy Entropy
P
&
oW s
3. 3 o

2
8
Critic Loss (MSE)
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Updates

400 500 0 100 200 300
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Figure 5. PPO Training Dynamics. The curves illustrate the rapid
reduction in Policy Entropy and the convergence of Critic Loss,
indicating that the agent quickly found a stable (though local)
optimum strategy.

Table 14 documents the detailed checkpoints from the train-
ing log. The agent achieves a terminal score of ~ 715 with
a highly stable gait (Slip ~ 1.05s).

B8. Molecular Design (Drug Generation)

Background and Cheminformatic Context

The Molecular Design domain poses a high-dimensional
combinatorial optimization challenge within chemical space.
Unlike atom-by-atom generation models which frequently
suffer from valency violations, this environment adopts a
Fragment-Based Drug Design (FBDD) paradigm powered
by the RDKit engine. The agent begins with a benzene
scaffold (clcccccl) and iteratively constructs complex
molecules by selecting functional groups from a predefined
library. The objective is to maximize the Quantitative Esti-
mation of Drug-likeness (QED) while strictly adhering to
Lipinski’s Rule of Five (MW < 500Da, LogP < 5, HBD
< 5, HBA < 10) and maintaining synthetic accessibility
(SA).

Experimental Configuration and Chemical Constraints
The simulation is governed by a rigorous set of chemical
constraints and reaction logic designed to mimic wet-lab
synthesis conditions:

* Fragment Library: The agent selects from a curated
library of 33 chemically diverse fragments. This in-
cludes rigid linkers (e.g., Cyclohexane C1CCCCC1,
Pyridine c1nccccl), polar functional groups (e.g.,
Carboxyl C (=0) O, Sulfonamide S (=0) (=0) N, Ni-
tro [N+] (=0) [0-1), and halogens (F, C1, Br). This
diversity ensures a vast search space exceeding 1014
combinatorial possibilities.



AutoAxiom: Closed-Loop Framework for Autonomous Symbolic Axiom Modification via LLMs

Table 13. PPO Hyperparameter Configuration .

Parameter Value | Parameter Value

Optimizer Adam Network Architecture  2-Layer MLP (64, 64)
Learning Rate 3 x 10™* | Activation Function Tanh

Gamma () 0.99 Orthogonal Init Gain /2

GAE Lambda (\) 0.95 Steps per Update 2048

Clip Range (¢) 0.2 Minibatch Size 64

Entropy Coeff 0.01 Update Rounds 4

Value Loss Coeff 0.5 Max Grad Norm 0.5

Total Timesteps 1 x 108 Action Std Init 1.0 (Fixed)

Table 14. PPO (SOTA-1) Training Dynamics by Zone. Temporal and energetic evolution across key training updates (Mean =+ 95% CI

based on N = 100 trials).

Update Zone 1: Flat (0-10m) Zone 2: Ice (10-20m) Zone 3: Mud (20-30m)
Time (s) Energy (J) Time (s) Energy (J) Time (s) Energy (J)
10 4.00 £ 0.00 128.29 +0.02]1.91 £0.01 15.24 £0.04 [1.99 £0.01 115.53 £0.35
20 3.00£0.00 164.04 £0.02|1.50£0.00 47.06 £0.01 [1.51 £0.01 119.58 £ 0.46
30 2.60 £0.00 196.47 £0.03|1.20 £0.00 81.05£0.02 [1.30 £ 0.00 120.12 £ 0.02
40 2.40 £0.00 206.24 £0.03[1.20 £0.00 100.31 £0.02|1.20 £ 0.00 116.05 £ 0.01
50 2.30 £0.00 213.00 £0.03[1.10 £0.00 101.20 £0.01|1.20 £ 0.00 118.32 +0.01
100 2.20£0.00 217.18 £0.02|{1.10 £0.00 108.98 £0.01|1.20 £ 0.00 119.85 £ 0.01
150 2.20 £0.00 219.49 £0.02|1.10 £0.00 109.62 £ 0.01|1.20 £ 0.00 119.86 + 0.20
200 2.20£0.00 219.51 £0.03|1.10 £0.00 108.36 £0.01|1.19 £ 0.01 119.02 £ 0.53
* Reaction Dynamics: Connectivity is en-  SMT-enforced safety constraints or Lipinski-aware penal-

forced via SMARTS reaction templates (e.g.,
['HO:1].[!'HO:2]>>[*:1]-[*:2]), enabling
realistic bond formations such as amide coupling, es-
terification, and nucleophilic substitution. This ensures
all generated intermediates are valency-correct.

* Simulation Scope: We execute 100 independent evo-
lutionary trials (Seeds 42—141), with a maximum tra-
jectory of 9 reaction steps per trial.

* PySR Configuration: To establish a robust baseline,
PySR was trained with a population of N = 3000
over 500 iterations, utilizing a broad operator set (+,
-, x, /, exp, log, sin, cos, tanh)and
a parsimony coefficient of 0.001 to penalize complex-
1ty.

B8.1. Axiomatic Forensics and Round Analysis

Phase 1: Human Prior (The Naive Baseline)
Axiom Form:

P(z) = 0.1- QED @21)

Mechanism Analysis: The initial policy, defined in
input_axioms. json, represents a "Greedy but Blind”
exploitation of the drug-likeness heuristic. Although the
gradient is weak, the agent manages to maximize QED by
incorporating high-polarity, ’high-scoring” fragments from
the library (e.g., nitro and sulfonamide groups). Without

29

ties, this naive optimization leads to a Toxic Rate of 34%.
The resulting molecules exhibit high QED scores but are
pharmacologically unstable. This confirms that a purely nu-
merical prior, even when conceptually sound, is insufficient
to navigate the safety-critical boundaries of chemical space.

Phase 2: Early Stage Exploration (The Reward Hacker)
Axiom Form:

P(x) = QED + (MW - SA) (22)

Mechanism Analysis: In the early rounds (e.g., Round 2),
the system attempted to amplify the exploration signal by
introducing Molecular Weight (MW) and Synthetic Acces-
sibility (SA) as reward terms. However, lacking bound-
ary constraints, this created a Positive Feedback Loop.
Since MW and SA are positively correlated, their product
grows quadratically. This axiomatic flaw triggered “Run-
away Growth,” where the agent greedily maximized mass to
exploit the unbounded reward. The result was the generation
of “obese” molecules (MW > 800 Da), such as long linear
chains, which maximized the score but violated all physical
viability rules.

Phase 3: Symbolic Regression Baseline (PySR Complex-
ity 19)
Axiom Form:

cosh(QED — 1.29)

P(z) = QED+8.297-cos (10g2 (exp (312 -logyq (
(23)

MW —+ log(MW)

)
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Mechanism Analysis: The policy derived by PySR serves
as a cautionary tale of Overfitting-Induced Paralysis.
While it achieves the lowest MSE on the static ZINC dataset,
the regression engine appends a highly oscillatory “noise
tail” involving nested transcendental functions to minimize
training loss. In the generative environment, this high-
frequency noise creates a "rugged” reward landscape where
any modification to the benzene scaffold results in a sharp,
artificial drop in predicted reward. Consequently, the agent
is trapped in a state of inaction, retaining the initial scaffold
(Mean MW = 82 Da) in over 90% of trials. This proves
that numerical precision on historical data does not translate
into an effective discovery policy in dynamic environments.

Phase 4: Optimal AutoAxiom (The Rational Discovery)
Axiom Form:

P(z) = {

Mechanism and Chemical Feasibility Proof:

The converged axiom represents a watershed moment in au-
tomated scientific discovery, characterized by three distinct
emergent intelligences:

0.5-0(2- QED) + tanh(0.1 - Nyings)
—In(MW) — In(SA) — exp (125100
(24)

1. Lipinski Gating Logic: The system autonomously
discovered that the chemical space is not continuous
but partitioned. The explicit ‘if/else’ structure acts as a
”Maxwell’s Demon,” sorting molecules into a ”Feasible
Manifold” (Drug-like) and a ”Toxic Quadrant.” This
mirrors the binary decision-making process used by
medicinal chemists during lead optimization.

. Logarithmic Barrier Function: Unlike linear penal-
ties, a logarithmic barrier exerts a gradient force that
scales with the relative deviation (%), providing strong
restoring forces at the boundary while preventing nu-
merical explosions for extreme outliers. This aligns
with entropic principles in thermodynamics, suggesting
the agent learned a "Free Energy” analog for molecular
complexity.

. Chemical Feasibility: The "In-Distribution” reward
term tanh(0.1- Ny, 4s) actively encourages the forma-
tion of rigid scaffolds (5-6 rings) rather than flexible
chains. Structurally, the generated candidates (e.g.,
mol_43) exhibit sophisticated pharmacophores, in-
corporating Fluorine for metabolic stability and Ke-
tones as hydrogen bond acceptors, while maintaining
a Molecular Weight of ~ 488 Da. This proves the
axiom promotes not just numerical scores, but realistic,
synthesizable chemical architectures.

Real-World Application and Deployment
The discovery of this interpretable axiom has immediate
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implications for the pharmaceutical industry. Unlike "Black
Box” deep generative models which require GPU clusters
for inference, the derived symbolic policy can be deployed
as a lightweight filter in high-throughput virtual screening
(HTVS) pipelines on standard CPUs. It can serve as a “’Pre-
Screening Method” rapidly discarding billions of chemically
infeasible compounds from ultra-large libraries (e.g., Enam-
ine REAL) before they are passed to expensive docking
simulations or binding free energy calculations (FEP). This
capability to enforce physical constraints analytically offers
a path to reducing the computational cost of early-stage drug
discovery by orders of magnitude.

B8.2. Reproducibility: PySR Baseline Training and
Dataset Source

To establish a rigorous benchmark for the Molecular Design

ifa e Llp&%ﬂﬁhin, we executed a full symbolic regression training
) otherwisecycle using the Julia-backed PySR engine. Unlike the syn-

thetic environments often used in theoretical works, we
grounded our baseline in real-world pharmaceutical data
to evaluate whether data-driven symbolic regression could
spontaneously rediscover medicinal chemistry principles.

Dataset Source and Objective Function
We utilized the ZINC-250k dataset, a standard collection of
commercially available compounds for virtual screening.

e Input State (X): For each molecule, a 10-dimensional
feature vector was extracted using RDKit: zg: MW,
z1: LogP, xo: TPSA, x3: QED, z4: SA-Score, z5:
Rings, etc.

» Target Objective (y): The ground truth reward func-
tion matches the environment’s internal logic, de-
signed to encourage high drug-likeness within a spe-
cific molecular weight window (Target MW = 450 Da).

IMW — 450]

—10.0- QED —
y=10.0-Q 20.0 ©

e ~N(0,0.1)

(25)
This objective presents a dual challenge: maximiz-
ing QED (which tends to favor lighter molecules)
while navigating a “narrow ridge” of optimal molec-
ular weight, forcing the agent to balance conflicting

gradients.

Hyperparameter Configuration

To give the baseline the best possible chance of finding
the true law, we expanded the search space significantly
compared to standard defaults. The configuration matches
the Molecular_SR.py script used in our experiments.

Pareto Frontier: Full Complexity Evolution Log

Table 16 documents the evolutionary trajectory extracted
from pysr_zinc_fair_log.csv. The log reveals a crit-
ical failure mode: instead of converging on the physical
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Table 15. PySR Hyperparameter Configuration. Settings adapted for the ZINC benchmark with an extended operator set to allow for

deep symbolic exploration.

Parameter Value \ Parameter Value

Iterations 50 Binary Operators ~ +, —, %, /,”

Populations 15 Unary Operators  sin, cos, exp, log, \ﬁtanh, abs, cosh
Max Size 40 Loss Function MSE (Mean Squared Error)

Variable Selection 10 Features

Model Selection

”Best” (Pareto)

structure of the reward function, the regressor oscillates be-
tween fitting the Molecular Weight penalty and overfitting
the experimental noise.

Forensic Analysis of the ”’Best” Solution:

While the Complexity 19 solution achieves the lowest MSE
(0.156), its generative performance is catastrophic. The term
8.29 - cos(. . .) acts as a pseudo-random number generator
conditioned on the input features. In the generative phase,
this creates a rugged reward landscape where valid chemical
modifications (e.g., adding a functional group) often trigger
a sharp drop in predicted reward due to the oscillatory nature
of the cosine function. This effectively paralyzes the agent,
causing it to reject 90% of proposed modifications and re-
main stuck at the initial scaffold (Benzene), as observed
in the mol_42 to mol_51 trajectories. This confirms that
numerical precision on a static dataset does not translate
to actionable policy in a dynamic environment.

B8.3. Formal Integrity Constraints and SMT
Verification

To ensure the physical and chemical validity of the evolved
axioms, AutoAxiom integrates a formal gatekeeper based on
the Z3 SMT solver. Every candidate axiom G proposed by
the consensus agent must pass a set of integrity constraints ®
before being admitted to the simulation environment. These
constraints are defined as a set of logical predicates over the
Domain Vocabulary Mapping (DVM).

The formal discriminant for the Molecular Design task is
defined as the following conjunctive normal form (CNF):

‘bmol = q/jbound A d)stability A wchemical (26)

Where the individual predicates are defined as follows:

* Hard Boundary Constraints (14,.,4): Enforces the
”Red Lines” of medicinal chemistry to prevent reward
hacking of obese molecules.

Phound = (MW < 500.0) A (LogP < 5.0) (27)

* Numerical Stability (¢s;qpi1:ty): Prevents the gener-
ation of axioms with divergent gradients that could
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crash the simulation or lead to floating-point errors.

(|priority_score| < 1000.0) A (dt > 0)
(28)

1pstability :

¢ Semantic Invariants (¢cpnemicqr): Ensures that the
symbolic logic does not violate the underlying
fragment-based design engine’s requirements.

'(/}chemical = (QED € [07 1]) A (SA € [1a 10]) (29)

During the verification stage, the SMT solver attempts to
find a satisfying assignment for the negation of the axiom
under constraints: C' A F(G) A =®. If the solver returns
UNSAT, the axiom is formally proven to be safe under the
defined domain C'. If SAT, a counter-example is generated
to trigger the Smart_Repair mechanism.

B8.4. Verbatim Evolutionary Logs (Listing)

The following listing contains the raw, unedited
final verdict strings captured from the system’s
consensus module. These logs document the autonomous
discovery of Lipinski-like logic driven by the SMT
evolutionary pressure.

B8.5. Seed Fragment Library (SMILES Specification)

To ensure experimental reproducibility, we provide the raw
SMILES strings of the 33 fragments used in the F§ Molecu-
lar Design domain. This library constitutes the action space
A for the graph editor, defining the combinatorial complex-
ity of the chemical search space.

Listing 4. Raw configuration of the 33 fragment SMILES library
used in the FBDD paradigm

# Fragment Library: Curated set of 33
pharmacophores and linkers
FRAGMENTS_SMILES = [

"ClCCCCCl", "N", "C(:O)O", "F"’ "Clll, n
BI‘", "C(:O)N",

"ClCCl", "clncccel"”, "CCO", "S(=0) (=0)N
" , n OC n , "Nc:O " ,

"C#Nll, " [N+] (:O) [Oi] "’ IIC:C", "Cl:CN:

CN1", "O0=S(=0) (0)0",

"cc(c)c", "clcceecl", "clee(O)cccl", "

eleceeleceece2ely,
"c(c() (cyec)ecn,
I",

"C:O", lloll, llSll,

npn n
’




AutoAxiom: Closed-Loop Framework for Autonomous Symbolic Axiom Modification via LLMs

Table 16. Complete PySR Discovery Log (ZINC Benchmark). Note the transition from linear approximations to high-complexity
numerical hallucinations.

Comp. Loss Score  Equation Form (Simplified) Mechanism Analysis
1 7.703 0.000 y=1.47 Mean Value Baseline
5 2106 0491 y=0.04-29—11.5 Linear Fit to MW (x(): Captures the gross penalty term.
8 1.687  0.073  y = cos(cosh(log(zo))) - 6.78 Oscillatory Noise: Attempts to fit the penalty residuals.
14 0.166 1.031 y=cos(...(1.42 —x3)/x0...) Highest Score: A complex interaction between QED (z3) and MW.
19 0.156 0.009 y=x3+8.29:cos(log,(exp(...))) Lowest Loss (Overfitting): The solver identifies QED (x3)

but masks it with high-frequency trigonometric noise.

Table 17. Summary of Evolutionary Logs for Priority Scoring Axioms
111X1
Round Edit Type Outcome Reason for Modification Axiom ID

01 Base offset Approved Safeguard log transformation against lower boundary errors. AXgrp.1
02 Tanh & Mult. Approved Bound QED output; manage MW/SA initial value stability. AXnrw _sa.1
03 Non-linear Dyn. Approved Enhance selectivity by incorporating synthesis difficulty. AXsyn.1
04 Sinusoidal Approved Accuracy across MW ranges via boundary-constrained oscillation. AXsrn.1
05 TPSA Trig/Exp Approved Increase evaluation selectivity; requires boundary control. AXrpsa.1
06 Piecewise Approved Optimize system performance and candidate selectivity. AX pw.1
07 Non-linear Trans. Approved Enhance discriminative ability; prevent sharp MW transitions. AXarw.2
08 LogP Exp. Approved Dimension added for drug-like property prediction. AX1ogp.1
09 Logistic Func. Approved Mitigate property fluctuations and address deadlock risks. AXroagr.1
10 TPSA Tanh Approved Non-linear scaling; monitored for oscillatory effects. AXrpsa.2
11 Size-Lipo Approved Balance innovation and robustness in interaction management. AX7n7.1
12 TPSA Exp. Mod. Approved Implement damping to stabilize rapid dynamic scoring changes. AXr1psa.3
13 Lipinski Rules Approved Alignment with domain constraints and boundary stability. AXrrp.1
14 Stochastic Approved Enhance model adaptability under risk-factor monitoring. AXs70.1
15 Boltzmann Dist. Approved Improve sensitivity to drug-likeness via parameter tuning. AXpor .1

"eclece[nH]cl", "clccec2[nH]ccc2cl”™, " Calculation: Computed as the
C1COCCN1", "C1CNCCN1", "clccccclo™ weighted geometric mean of eight
desirability functions (d;) covering

properties like MW, LogP, TPSA,

etc.
Complexity Analysis: The library includes a diverse ar-

ray of scaffolds (Benzene, Naphthalene), polar functional Z§:1 w; Ind;(x)
groups (Sulfonamide, Nitro), and common medicinal halo- QED = exp Zs ws (30)
gens. Combined with a maximum trajectory of 9 reac- =

tion steps, the reachable chemical space comprises approxi- Meaning: A normalized index [0,1]
mately 33° =~ 4.6 x 10'3 unique molecular graphs. AutoAx- representing how "drug-like" a
iom’s ability to navigate this space under SMT-enforced molecule is relative to known oral
Lipinski constraints without gradient-based molecular opti- drugs.
mization demonstrates the efficacy of the evolved symbolic
logic. MW (Molecular Weight)
Calculation: MW = 3}, AtomicWeight;.
B8.6. Detailed Quantitative Metrics for Molecular Meaning: Total mass of the
Discovery molecule. Lipinski’s Rule of Five
suggests MW < 500 Da for optimal
All cheminformatic properties are computed using the RD- bioavailability.

Kit (2023.09.1) library. This section details the mathemat-

ical formulation and chemical significance of the metrics 08P (Partition Coefficient)
reported in Table 18. Calculation: Estimated using the

Wildman-Crippen method (Wildman
and Crippen, 1999) based on atomic
contributions. Meaning: Measures
QED (Quantitative Estimation of Drug-likeness) lipophilicity. Excessively high

[style=multiline, leftmargin=3cm, font=]
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LogP (> 5) leads to poor solubility
and metabolic instability.

TPSA (Topological Polar Surface Area)
Calculation: Sum of surface
contributions of polar atoms
(primarily N, O, and their attached

Hydrogens). Meaning: Predictive
of drug transport and cell
permeability. Ideally targets

20 A2 < TPSA < 140 A2.

SA Score (Synthetic Accessibility)
Calculation: Based on a
combination of fragment
contributions and a complexity
penalty (Ertl and Schuffenhauer,
2009) . Meaning: Measures the
difficulty of synthesis [1,10],
where 1 is easy and 10 is extremely
difficult.

Toxic Rate (Structural Alerts)
Calculation: Percentage of
generated candidates containing
"Red Flag" functional groups
defined in the fragment library’s
metadata (e.g., Nitro [N+](= 0)[0-],
Sulfonamide S(= O)(= O)N). Meaning:
Indicates the prevalence of "Reward
Hacking" where the agent exploits
polar groups to boost QED at the
cost of chemical toxicity.

HBD / HBA
Calculation: Count of —-OH/-NH
groups (Donors) and N/O atoms
(Acceptors). Meaning: Fundamental

parameters in Lipinski’s Rule for
hydrogen bonding potential.

Table 18 presents the comprehensive statistical breakdown
of molecular properties across four evolutionary stages.
These metrics are calculated over 100 independent trials
(Seeds 42—141). PySR achieves 0% toxicity in Table 17.
However, it exhibits low Steps Taken under the sequential
protocol, indicating stagnation. AutoAxiom instead bal-
ances progress and constraint satisfaction under the same
protocol.

Data Interpretation: As observed in Table 18, Input Ax-
ioms achieve the highest QED but suffer from a 34% toxic-
ity rate, indicating they rely on pharmacologically unstable
fragments. The Early Stage exhibits "Reward Hacking,”
maximizing MW (812.8 Da) and LogP (10.19) due to a
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lack of formal boundaries. PySR enters a state of action-
paralysis (Steps ~ 0.9) due to oscillatory noise in the reward
landscape. In contrast, the Optimal Axiom autonomously
suppresses toxicity to 8% while pulling MW and TPSA
back into the Lipinski-compliant manifold, demonstrating
the emergence of scientific intuition.

B9. Cost Report

To evaluate the real-world practicability and hardware ac-
cessibility of AutoAxiom, we report the computational over-
head recorded during execution on a standard commodity
laptop. As summarized in the Cost Report (Table 19), the
recorded durations represent the mean and 95% CI for a sin-
gle evolutionary round, encompassing LLM orchestration,
formal verification (SMT), and domain-specific simulation.

Appendix C: Pseudocode and Mathematics
proof of Method Part

C1. Pseudocode

Listing 5. AutoAxiom: Evolutionary Symbolic Discovery Loop.
The procedure instantiates the Tripartite Consensus (Sec 3.2) and
Two-tier Verification (Sec 3.3). G denotes the Core IR graph, ®
the Red Line constraints, ¥ the execution operator, and R the
repair operator.

Algorithm: AutoAxiom_Evolutionary_Loop

Input: Core_IR Gy, Domain Vocabulary D,
Grammar X, Total Rounds T =15

Output: Optimized_Axiom G*

1. Initialize: Grest = Go,

2. For round t=1 to T do:

History_Buffer

3. // Phase A: Tripartite Context-
Aware Proposal (Sec 3.2)
4. Context = Summarize_History(

History_Buffer) // Latest 5 rounds

5. G = Radical_Innovator (Gpest,D, X,
Context) // High-entropy proposal
6. G = Conservative_Guardian (G,D, ®)

// Manifold projection
7. Gorop = Consensus_Maker (G, G)
// Pareto selection

8.

9. // Phase B & C: Two-tier
Verification & Repair (Sec 3.3)

10. // Tier—-I: Static Ontological
Invariants Vet

11. if not Check_DVM_Compliance (Gprop, D) :

12. Gsin = R(Gprop,&) // Repair using
counter—example &£

13. Nviol = 1

14. else:

15. // Tier—-II: SMT Stability Check
Vsmt against Red Line ¢

16. if SMT_Check (Gprop, ®) == UNSAT:
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Table 18. Comprehensive Statistical Evaluation (F8: Molecular). Note the trade-off between the high QED of “’toxic” input axioms
and the physically grounded consistency of the Optimal Axiom.Steps Taken denotes average executed steps per trial under the protocol.

Metric Input Axioms Early Stage  Optimal Axiom PySR (Best)
QED 1 0.787£0.02 0.1124+0.01 0.397 £0.04 0.450 £ 0.01
MW (Da) | 3174+ 12.6 812.8£10.7 443.9+13.5 82.3£34
LogP 3.387+£0.19 10.194+0.73 6.346 £ 0.37 1.752 + 0.06
TPSA (A2) 69.43+534 1374+145 62.36£6.77 0.84 £0.94
Steps Taken 4.55 + 0.29 8.56 +0.12 5.69 £ 0.27 0.90 £0.17
SA Score 3.00 £0.00 3.00 £ 0.00 3.00 £ 0.00 3.00 £ 0.00
H-Bond Donors (HBD) 1.63 £0.12 3.29 £ 0.32 1.70 £0.17 0.05£0.05
H-Bond Acceptors (HBA) 3.02+£0.23 6.13 £0.62 2.83£0.29 0.05 £ 0.05
Number of Rings 2.58 £0.16 7.55 £ 0.40 5.29 +0.24 1.04 £0.04
Toxic Rate (%) | 34% 21% 8% 0%

Table 19. AutoAxiom Cost Report. Mean and 95% CI for one evolutionary round on a commodity laptop. Peak memory = max RSS
during execution (single snapshot).

17.
18.
19.
20.
21.
22
23.
24.
25.
26.

27.
28.

29 o
30.
31.
32 o
33
34.

38,
36

Domain LLM Calls (s) SMT Check (s) Simulation (s) Peak RAM (MB)
Queue Network 25.31 + 2.36 0.018 £ 0.004 1.11 £0.13 344.6
Service Center 30.02 £ 4.43 0.004 £ 0.001 18.01 £1.29 363.8
Software Opt 25.40 £+ 3.26 0.003 £ 0.001 0.01 £0.00 338.8
Physical PDE 36.79 +4.14 0.002 + 0.001 14.32 £4.46 339.8
Res. Allocation 25.18 +2.85 0.005 + 0.001 0.01 £ 0.00 342.3
Composition 27.19 + 2.08 0.002 + 0.001 21.59 4+ 6.46 344.1
Soft Robot 36.37 £6.30 0.0078 =0.002 117.89 + 30.22 362.5
Molecular 40.62 £ 4.53 0.006 £ 0.002 0.81 £0.22 365.9
Gsin = R(Gprop,&) // Smart 37. // State Update (Contextual History
Repair (Sec 3.3.3) Buffer)
Nyior =1 38. History_Buffer.Append (f,Gprop, Score,§)
else:
Gsim = Gprop 39. if Score > Best_Score_History:
Nviol =0 40. gbest = gprop
41.
// Phase D: Execution via 42. End For
Simulation (Sec 3.1, Operator V) 43. Return Gpest
Y = ¥(Gsin,S0,2) // Stochastic
rollout, 100 seeds
Spers = mean(y)

// Performance score
Ppers - Var(y) //
Persistence (negative variance)

// Phase E: Dynamic Annealing
Reward (Sec 3.4)

Av(t) = AO . exp(_t/Trise) //
Constraint hardening

Ap(t) = Ao - (1 — exp(—t/Tstan)) //
Robustness emphasis

)\d(t) = Ao - maX(O, 1-— 2t/T)

// Diversity decay
Paiv = Calc,Diversity(gpmp, go)

J(A) = Sperf - A'u (t)Nviol + Ap(t),’)pers + Ad(t)Pdiv
Score = Normalize (J(A), Juin, Jnax)

C2. Structural Properties of the Axiomatic
Manifold A

We define the axiomatic search space as a discrete manifold
M structured by the Production Grammar Y. Each axiom G
is a point in this symbolic space.

Lemma C2.1 (Minimalism of Axiomatic Basis). The 5-
tuple ontological basis D = (N, R, O, Y, ®) spans the
minimal sufficient set for representing any computable sci-
entific law within the domain.

Proof. Let L be the set of all physically realizable laws
in a given domain. We define a mapping ¥ : M — L.
1) Sufficiency: By the Universal Approximation prop-
erty of symbolic trees, any computable function F can be
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represented by a finite composition of operators o € O
over nodes n € N. 2) Minimality: Assume a basis
D' = D\ {T}. Then there exists an axiom G where vari-
able types are ambiguous, leading to a non-empty set of
dimensionally inconsistent states, thus ¥ (Mp-) ¢ £. Sim-
ilarly, removing ¢ allows the inclusion of states that vi-
olate domain invariants (e.g., non-negativity of physical
constants). Thus, D is the smallest set of constraints such
that VG € Mp, Units(G) € T and Stability(G) + . O

Theorem C2.2 (Canonical Confluence of Core IR). The
normalization function N F'(-) guarantees that algebraically
equivalent axioms converge to a unique identity node in the
Directed Acyclic Graph (DAG).

Proof. We model N F' as an Abstract Rewriting System
(ARS). Let — g be the set of reduction rules (Constant Fold-
ing, Commutative Sorting, and Common Sub-expression
Elimination). 1) Termination: Each rule reduces the num-
ber of nodes |V| or the lexicographical entropy of the
graph. Since |V| is bounded by the grammar depth, the
sequence of reductions is finite. 2) Local Confluence:
For any node v where multiple rules apply, the Commu-
tative Sorting ensures a deterministic path to the same
normal form regardless of application order. By New-
man’s Lemma, since the system is both terminating and
locally confluent, it possesses Global Confluence. Thus,
NF(G1) = NF(G2) <= Gi =ay Go. O

C3. Proof of Synergistic Gain and
Convergence

We formalize the tripartite mechanism as a Search Space
Partitioning problem rather than a vectorial analogy.

Theorem C3.1 (Synergistic Search Efficiency). The tripar-
tite protocol {¥,qq, F con, Fsys} achieves a higher success
probability Py.; than a monolithic agent by resolving the
information bottleneck of constrained discovery.

Proof. Let S be the total search budget. In a monolithic
LLM, the attention mechanism must simultaneously satisfy
the innovation objective J,,0v¢; and the safety constraint ®.
This creates Cognitive Interference, where the entropy of
the prompt H o pt is divided. 1) Decoupled Sampling:
The Radical agent (F,.,4) samples from an unconstrained
distribution P,.,4 with high entropy, maximizing the dis-
covery of performance-intensive manifolds. 2) Manifold
Projection: The Conservative agent (F'.,,,) acts as a Non-
expansive Projection Operator Iy, : M — Mg. It
performs local repair R using the SMT counter-example
&. Under a fixed budget S, the probability of hitting the
Pareto front P(G € M, 441 N Mg ) is maximized because
each agent solves a sub-problem with lower combinatorial
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complexity. This follows from the Data Processing In-
equality: partitioning the task reduces the noise introduced
by conflicting multi-objective instructions in a single context
window. O

Lemma C3.2 (Stability of the Evolutionary Loop). The evo-
lutionary sequence { Ay} converges to the stable manifold
Mg under the dynamic annealing schedule.

Proof. Define a discrete-time Lyapunov function V' (A4,) =
drep (A, Mg ), where drgp is the Tree Edit Distance to
the nearest feasible axiom. 1) Annealing Hardening: As
t — T, the penalty )\, (¢) increases the rejection probability
of any A ¢ Mg. 2) Drift toward Feasibility: The Repair
Operator R ensures that for any unstable proposal A, the
repaired version A satisfies V(A) = 0. 3) Convergence:
Since the reward function J(A) enforces selection pressure,
the probability P(A; ¢ Mg) — 0ast — T. Thus, V(A;)
is a super-martingale that converges to 0, proving search
stability within the safety envelope. O

C4. Formal Verification and SMT Soundness

The verification engine V' (G) utilizes SMT (Satisfiability
Modulo Theories) to prove the **Safety Invariant** ®.

Soundness over Bounded Intervals: For non-linear opera-
tors (e.g., exp, tanh), we adopt soundness restricted to the
search domain C C R"™. The Z3 solver performs Interval
Arithmetic Propagation. If the solver returns UNSAT for
C AF(G) A—®, it is mathematically guaranteed that no state
within the bounded intervals can trigger a violation under
the given floating-point precision.

SafeCut and Logical Confluence: The repair operator R
utilizes the counter-example £ to perform a **Structural
Projection**. It identifies the sub-tree responsible for the
violation and replaces it with a saturated primitive (e.g.,
x — max(e, x)). This ensures the modified axiom G*
is a **Logical Confluence point** that preserves original
reasoning while satisfying the safety invariant.



