
AutoAxiom: Closed-Loop Framework for Autonomous Symbolic Axiom Modification via LLMs

Anonymous Authors¹

Abstract

Large Language Models (LLMs) have excelled at parametric optimization within fixed rule-sets, yet they rarely challenge the underlying axiomatic constraints of a domain. We present AutoAxiom, a closed-loop framework for large language model based symbolic axiom discovery with formal verification. AutoAxiom combines (1) AxiomDSL and a compiled Core IR, (2) a tripartite proposer for proposal, projection, and selection, and (3) SMT based verification with a repair mechanism. Across six domains, AutoAxiom achieves SRA above 1.0 in 5 of 6 domains, with the largest SRA values of 3.15 in Physical PDE and 1.74 in Queueing Network (Table 1). The framework discovers interpretable, “Zero-Blackbox” axioms that consistently outperform human-designed baselines and SOTA heuristics. In ablations, the full system attains 96.30% repair rate, 4.44% violation rate, and 100% success rate (Table 2). The implementation reports peak process memory in the range 338.8 to 365.9 MB across domains and per round timing breakdowns in Table 18. Our codes and models will be publicly available upon publication.

1. Introduction

Current approaches to AI-driven scientific discovery (Reddy & Shojaee, 2025; Fu, 2025; Gottweis et al., 2025; Kalaivani et al., 2025) Deep Learning, Symbolic Regression, and Large Language Models each face critical limitations. Deep Learning (DL) excels at high-dimensional pattern recognition but operates as a “black box” (ŞAHİN et al., 2025), failing to generalize in Out-of-Distribution (OOD) scenarios (Li et al., 2025). Symbolic Regression (SR) (Abdus-Salam et al., 2025; Yu et al., 2025; Yi et al., 2025) pur-

sues explicit mathematical laws but suffers from “semantic blindness” (DeRose, 2006) it fits equations to data without understanding their physical meaning, often producing “numerical hallucinations” (Shao et al., 2025) that overfit noise. Large Language Models (LLMs) offer emergent reasoning capabilities (Zhang et al., 2025a; Xu et al., 2025a;b), yet a critical *Verification Gap* prevents their rigorous deployment: as probabilistic engines (Zhang et al., 2025b), they can generate syntactically valid but physically impossible axioms.

Each paradigm thus fails in isolation: DL lacks interpretability, SR lacks semantic grounding, and LLMs lack formal guarantees. The question becomes: *can we combine the creativity of LLMs, the explicitness of SR, and the rigor of formal verification into a unified framework?*

In this paper, we present **AutoAxiom**, a closed-loop system that reframes scientific discovery as *axiom evolution*. As shown in figure 1, rather than optimizing a scalar reward S under fixed rules, AutoAxiom iteratively refines the axiom set A itself (Ma et al., 2025) elevating the LLM from a passive equation solver to an active *Axiom Architect* (Wang et al., 2025; Alter, 2025; Kim, 2025; Gulati et al., 2025). We summarize our contributions as follows:

- **AxiomDSL and Core IR for typed, editable axiom representation:** We introduce *AxiomDSL*, a domain-specific language that formally defines the ontology of each scientific domain. AxiomDSL compiles into a *Core Intermediate Representation (IR)* a mutable blueprint that the LLM can edit structurally. This decoupling ensures that LLM-generated logic remains agnostic to specific simulation backends, enabling portability across heterogeneous domains while preserving ontological grounding.
- **Tripartite proposer that separates proposal, projection, and selection:** Unlike blind SR that fits arbitrary equations to data, AutoAxiom constrains its search space via the AxiomDSL ontology. Strict type safety and a *Tripartite Consensus* mechanism guide exploration toward semantically meaningful regions of the hypothesis space discovering genuine physical laws rather than numerical artifacts

¹Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author <anon.email@domain.com>.

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

055
056
057
058
059
060
061
062
063
064

- **Two tier verification and repair mechanism:** To close the Verification Gap, our *Autonomous Axiom Verification and Synthesis* system ($\mathcal{A}^2\mathcal{V}\mathcal{S}$) implements a Tier-II *Satisfiability Modulo Theories (SMT) Gatekeeper*. Before any axiom reaches the simulator, Z3 subjects it to SAT/UNSAT proofs against “Red Line” safety constraints. This stage mathematically guarantees physical consistency, rejecting syntactically plausible but semantically invalid candidates.

065 We evaluate AutoAxiom across heterogeneous domains
066 spanning discrete optimization, continuous control, and
067 molecular design. Results demonstrate consistent improvements
068 over most state-of-the-art baselines. For Instance,
069 compared to well-trained reinforcement learning policies
070 (PPO), AutoAxiom achieves comparable task performance
071 while producing fully interpretable “white-box” axioms.
072 Compared to symbolic regression methods, it avoids overfitting
073 traps and discovers rules that generalize to unseen test
074 distributions. Across all domains, AutoAxiom converges up
075 to 2 \times faster than baseline methods on challenging problem
076 instances.

2. Related Work

080 **Symbolic Regression: From Blind Search to Semantic
081 Discovery** Data-driven symbolic regression (SR) (Dong
082 & Zhong, 2025; Holt et al., 2023) has long been the gold
083 standard for recovering physical laws from sparse data (Wad-
084 dayama et al., 2025). Algorithms such as PySR (Tonda,
085 2025) excel at optimizing numerical constants within fixed
086 functional forms. However, these methods suffer from a
087 “semantic blind spot”: they directly manipulate primal math-
088 ematical operators while ignoring domain ontology (Sapel
089 et al., 2025). Consequently, in noisy environments or lack-
090 ing effective real-world feedback, SR algorithms often fall
091 into “overfitting paralysis” (Santos & Papa, 2022). In
092 contrast, AutoAxiom constrains the search space through a
093 domain vocabulary mapping (DVM). By enforcing strict
094 type safety and ontology consistency (as defined in our Axi-
095 omDSL), we shift the paradigm from blind combinatorial
096 search(Aigner, 1988) to semantically guided discovery.

097 **LLM for Science: Bridging the Verification Gap via De-
098 coupled Feedback** Large Language Models (LLMs) (Wang,
099 2025) have demonstrated emergent capabilities in scientific
100 reasoning (e.g., Eureka (Ma et al., 2023), FunSearch (Agli-
101 etti et al., 2024)). However, these systems primarily operate
102 on empirical validation loops, creating a “Verification Gap”:
103 they optimize for numerical performance without formal
104 logical guarantees. This leaves them prone to “mechanistic
105 hallucinations” (Yu et al., 2024): logic that is syntactically
106 plausible but physically unstable. AutoAxiom addresses
107 this through a structural decoupling of reasoning and ex-
108 ecution. Unlike standard LLM code-generation approaches

109 (Joel et al., 2024) that rely on LLMs for end-to-end simulation
110 code, our system restricts the LLM’s role to that of a *graph editor* (Paassen et al., 2020) on a verifiable Core IR,
111 leaving the actual execution to a deterministic, objective sim-
112 ulation backend. This architecture enforces a rigorous **“Red
113 Line” mechanism**: the Tier-II SMT Gatekeeper (De Moura
114 & Bjørner, 2008) not only intercepts safety violations (e.g.
115 energy divergence) but also injects **constraint-violation
116 penalty factors** back into the evolutionary loop.

Neural Operators vs. Symbolic Generalization Deep Learning approaches, such as Physics-Informed Neural Networks (PINNs)(Lawal et al., 2022) and Deep Reinforcement Learning (e.g., PPO(Yu et al., 2022)), dominate high-dimensional control tasks. While these “black box” models achieve excellent performance across their training distributions, their opacity makes them unsuitable for safety-critical deployments. AutoAxiom aims to achieve “white box” generalization. By synthesizing explicit discrete logic (e.g., contact gating switches, saturation boundaries), our framework discovers compact axiomatic laws.

3. Methodology

3.1. Scientific Search Space: Ontological Foundation

The search space is anchored by a Domain Specific Lan-
guage, AxiomDSL, which provides the ontological con-
straints, and is realized through the Core IR, which enables
computational execution.

The AxiomDSL is defined as a 5-tuple ontological basis \mathcal{D} that constrains the symbolic search space of scientific laws: $\mathcal{D} = \langle \mathcal{N}, \mathcal{R}, \mathcal{O}, \Upsilon, \Phi \rangle$ where $\mathcal{N} = \{n_1, n_2, \dots\}$: Scientific Entities representing domain-specific variables (e.g., arrival rates, thermal flux). $\mathcal{R} \subset \mathcal{N} \times \mathcal{N}$: Semantic Relations defining the directed causal flow. \mathcal{O} : Operator Set, a curated grammar of allowed primitives including continuous math (e.g., \tanh , \exp) and **Discrete State Operators** (e.g., **if-then-else**, $\mathbb{I}_{\text{condition}}$) to model non-linear phase transitions. $\Upsilon : \mathcal{N} \rightarrow \{\text{Type, Unit, Role}\}$: Vocabulary Mapping that anchors each entity to physical reality. Φ represents Integrity Constraints (the “Red Line”), defining non-negotiable physical boundaries (e.g., $\rho < 1$).

Scientific formulas can be viewed as instantiations within \mathcal{D} . For instance, a classic M/M/1 queueing delay axiom is a specific configuration of $(\mathcal{N}_{\text{queue}}, \mathcal{R}_{\text{delay}}, \mathcal{O}_{\text{basic}})$. The feasible set of all such configurations is denoted as \mathbb{A} , representing the total axiomatic search space as shown in figure 2.

While the AxiomDSL (\mathcal{D}) serves as a high-level interface for symbolic reasoning, machine execution requires a flattened, topological structure. To bridge this gap, we define the Core IR as a representational layer designed to be processed by

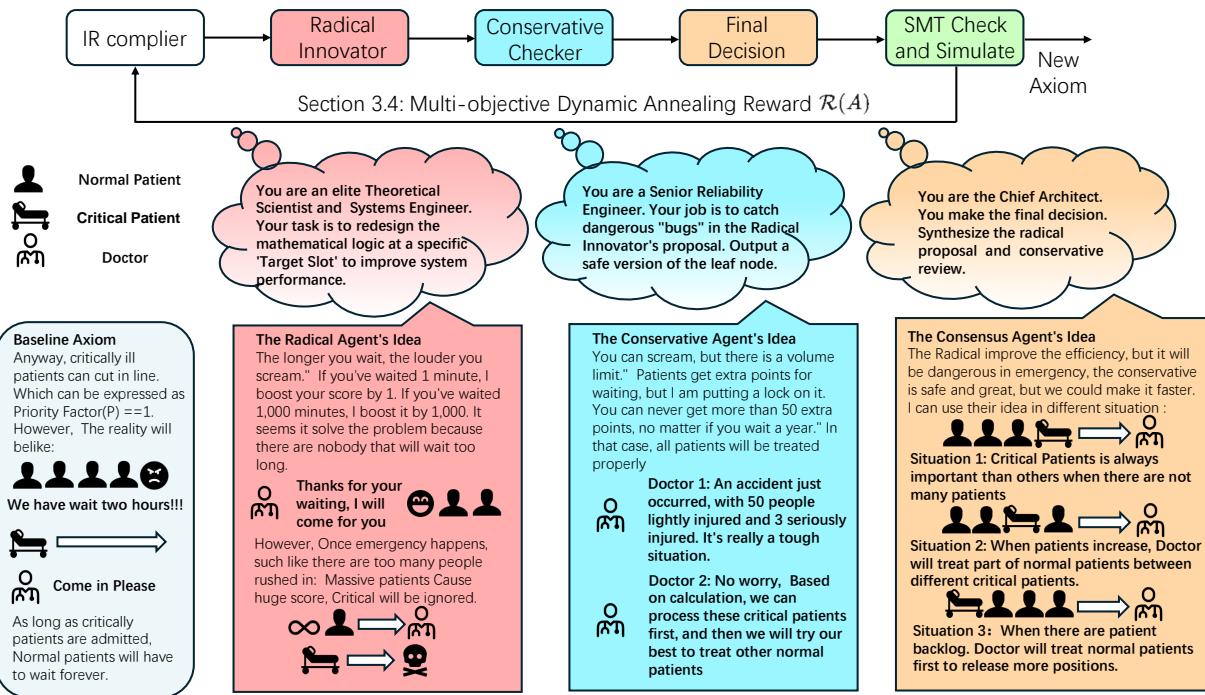


Figure 1. **Top:** Pipeline: IR compilation, tripartite proposer, SMT verification, simulation and selection over rounds. **Bottom:** Using a service center scenario as a running example, we illustrate how AutoAxiom transforms naive heuristics into robust symbolic axioms.

heterogeneous simulation backends.

For any axiom set $P \in \mathbb{A}$ expressed in \mathcal{D} , its corresponding Core IR is defined as a recursive Directed Acyclic Graph (DAG) $\mathcal{G} = \langle V, E, \mathcal{K} \rangle$, where: $V \subset \mathcal{N} \cup \mathcal{O}$ represents the set of computational nodes. $E \in V \times V$ denotes the directed data-flow dependencies. \mathcal{K} is the set of observable metrics derived from the execution trace.

The transition from the human-centric DSL to the machine-executable IR is governed by a lowering function $\Gamma : P^{\mathcal{D}} \rightarrow \mathcal{G}$. This decoupling facilitates autonomous discovery: the LLM Proposer performs structural mutations on \mathcal{D} , while the Formal Verifier performs symbolic execution on \mathcal{G} to evaluate properties such as global stability.

To translate the abstract topology into empirical results, we define an execution operator Ψ that evaluates \mathcal{G} over a simulation horizon T . Let $\sigma(V)$ be a valid evaluation sequence satisfying the partial order defined by E . The resulting performance metric $\mathbf{y} \in \mathcal{K}$ is formalized as:

$$\mathbf{y} = \Psi(\mathcal{G}, \mathbf{S}_0, \Omega) \triangleq \bigoplus_{t \in T} f(\sigma(V), \mathbf{S}_t, \omega_t) \quad (1)$$

where \mathbf{S}_0 is the initial state, $\Omega = \{\omega_t\}$ denotes stochastic noise, and \bigoplus represents temporal aggregation.

3.2. Constrained Evolution via Dialectical Consensus (f_{mod})

We formalize the axiomatic modification f_{mod} as a structured evolutionary process within the symbolic manifold \mathbb{M} defined by the Production Grammar Σ_{prod} and the Domain Vocabulary Map \mathcal{D}_{DVM} . The evolution of an axiom $A \in \mathbb{M}$ is driven by a Tripartite Consensus Mechanism that resolves the conflict between exploratory innovation and physical consistency.

The search space is strictly bounded by two structural invariants: Syntactic Feasibility (Σ_{prod}): Mutations are restricted to recursive tree-rewriting operations $A \xrightarrow{\Sigma} A'$. and Ontological Grounding (\mathcal{D}_{DVM}): A projection $\Pi_{\mathcal{D}} : A \rightarrow \mathbb{M}$. To ensure type-preservation and role-consistency and the integrity of the DAG structure.

The optimal proposal A^* emerges from the equilibrium of three competing LLM agents: Radical agents (\mathbf{F}_{rad}), Conservative Guardian (\mathbf{F}_{con}), and Global Synthesis (\mathbf{F}_{sys}).

The Radical Innovator executes a high-entropy jump in the symbolic space. We quantify this jump using a **Structural Divergence Metric** on the IR representation. Specifically, $\text{dist}(\bar{A}, A_{\text{hist}})$ proxies the magnitude of symbolic transformation (e.g., structural

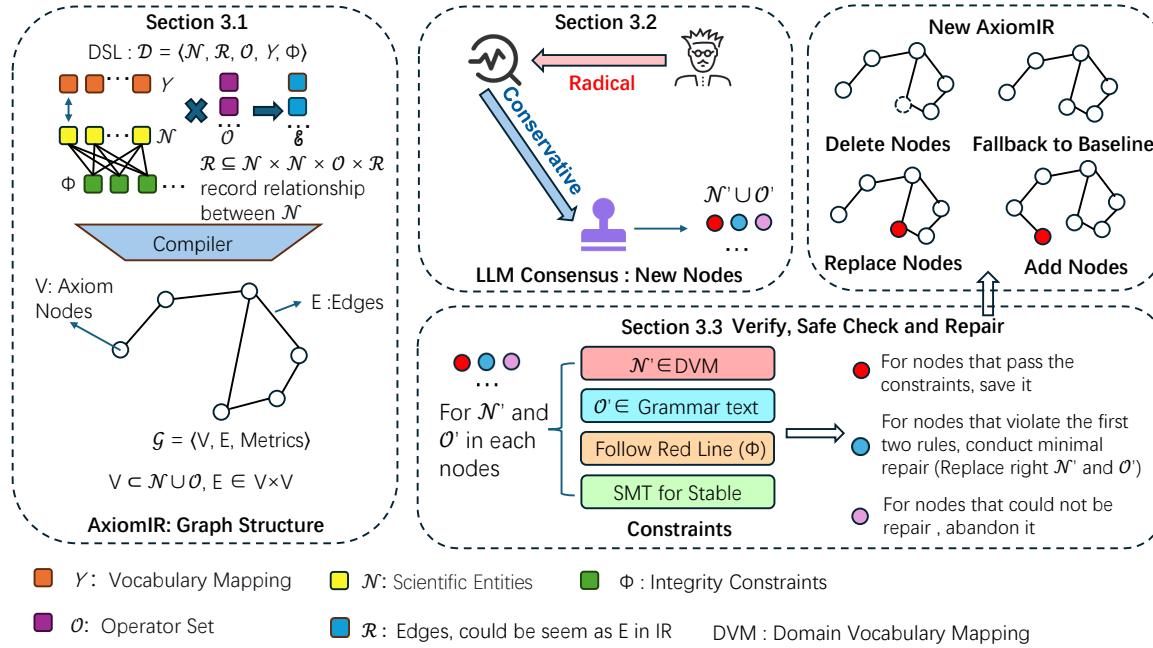


Figure 2. Workflow of the symbolic graph editor The engine transpiles the domain DSL into a granular IR graph structure. LLM agents perform targeted node replacement and structural modification within the graph, which are subsequently passed through formal node verification gates to synthesize the final, validated IR.

rewriting or complexity shift) required to distinguish the proposal from historical baselines. By incorporating a diversity incentive where $\text{dist}(\tilde{A}, A_{hist}) \propto \mathcal{P}_{div}$, the system actively penalizes stagnation and forces the search to explore heterogeneous regions of the solution manifold, effectively escaping local optima.

Conservative Guardian acts as a logical manifold projection. It maps the high-entropy proposal \tilde{A} back onto the feasible physical set \mathbb{M}_Φ defined by the DVM and "Red Line" constraints. The operator $\arg \min$ in \mathbf{F}_{con} is implemented as a Heuristic Manifold Projection. Rather than continuous gradient descent, the Conservative Guardian performs Targeted Sub-graph Mutation: it receives the SMT counter-example ξ and utilizes JSON-pointers to identify and re-synthesize only the specific IR branches responsible for the violation, thereby minimizing the structural deviation δ from the original proposal.

In the end, the Consensus Maker performs a multi-objective judgment. It evaluates the trade-off between the radical performance gain of \tilde{A} and the conservative stability of \tilde{A} , outputting A^* as the globally optimal axiomatic patch. Crucially, \mathbf{F}_{sys} incorporates an **Occam's Razor bias**, penalizing excessive Kolmogorov complexity to ensure the discovered laws remain scientifically interpretable. Formalized as follows:

$$\begin{cases} \mathbf{F}_{rad} : A \rightarrow \tilde{A} & \text{s.t. } \text{dist}(\tilde{A}, A_{hist}) > \eta, \nabla \mathcal{S}(\tilde{A}) > 0 \\ \mathbf{F}_{con} : \tilde{A} \rightarrow \bar{A} & \text{s.t. } \bar{A} = \arg \min_{a \in \mathbb{M}_\Phi} \|a - \tilde{A}\| \\ \mathbf{F}_{sys} : \{\tilde{A}, \bar{A}\} \rightarrow A^* & \text{s.t. } A^* = \text{Pareto}(\mathcal{S}, \mathbb{V}, \mathcal{P}_{complex}) \end{cases}$$

3.3. Formal Boundary and Logical Confluence (\mathbb{V})

To make evolved axioms are not only syntactically consistent but also physically stable, we implement a multi-tier verification predicate $\mathbb{V} : \mathcal{G} \rightarrow \{0, 1\}$. This stage acts as a "Logical Filter." To balance reasoning efficiency and formal rigor, the verification process follows a dual-stage filtering strategy. While the Conservative Guardian (\mathbf{F}_{con}) acts as a pre-emptive heuristic filter, the SMT Gatekeeper serves as the final deterministic audit to eliminate latent instabilities.

3.3.1. TIER-I: STATIC ONTOLOGICAL INVARIANTS

The first layer performs static analysis on the graph \mathcal{G} against the \mathcal{D}_{DVM} to identify explicit boundary violations. We define the static predicate \mathbb{V}_{stat} as:

$$\mathbb{V}_{stat}(\mathcal{G}) = \bigwedge_{v \in V} \mathcal{I}(v) \wedge \deg(v) \in \mathcal{O}_{Gram} \quad (2)$$

where $\mathcal{I}(v)$ represents the Immutability Check.

220 3.3.2. TIER-II: DEEP STABILITY VIA SMT PROJECTION
 221 Latent instabilities are identified by lowering \mathcal{G} into a First-
 222 Order Logic (FOL) formula \mathbb{F} via a recursive symbolic
 223 mapping $\mathcal{T} : \text{Node} \rightarrow \text{Z3Expr}$. Each node in the Core IR
 224 is mapped to its equivalent SMT primitive (e.g., $v_{add} \rightarrow$
 225 $+$, $\text{piecewise} \rightarrow \text{ITE}$ logic), allowing the SMT solver to
 226 perform deterministic SAT/UNSAT proofs over the entire
 227 parameter manifold defined in \mathcal{C} .
 228

229 An axiom \mathcal{G} is **Stable** iff the solver proves the unsatisfiability
 230 of the violation state $\neg\Phi$ under constraints \mathcal{C} :

$$232 \mathbb{V}_{smt}(\mathcal{G}) = 1 \iff \text{Solve}(\mathcal{C} \wedge \mathbb{F}(\mathcal{G}) \wedge \neg\Phi) \rightarrow \text{UNSAT} \quad (3)$$

233 If the result is SAT, the solver yields a **Counter-example**
 234 $\xi = \{\mathbf{s} \mid \mathbb{F}(\mathcal{G}, \mathbf{s}) \vdash \neg\Phi\}$, identifying the exact parameter
 235 regime where the proposed logic collapses.
 236

237 3.3.3. LOGICAL CONFLUENCE AND SAFE CUT REPAIR
 238 (\mathcal{R})

239 Upon verification failure ($\mathbb{V} = 0$), the system invokes a repair operator \mathcal{R} to project illegal logic back onto the nearest
 240 stable manifold:

$$244 \mathcal{G}^* = \mathcal{R}(\mathcal{G}, \xi) \triangleq \arg \min_{\mathcal{G}' \in \mathbb{M}_\Phi} \delta(\mathcal{G}', \mathcal{G}) \quad (4)$$

245 By utilizing ξ as a "Logical Gradient," the LLM performs
 246 a targeted prune on the unstable branches of \mathcal{G} , forcing the
 247 search to converge within the safety envelope.
 248

249 3.4. Adaptive Synthesis and Dynamic Reward
 250 Annealing

251 The AutoAxiom framework operates as an iterative closed-
 252 loop system driven by a Dynamic Objective Function $J(A)$.

253 3.4.1. MULTI-OBJECTIVE OBJECTIVE FORMULATION

254 The objective $J(A)$ is defined as a weighted sum of four
 255 competing metrics:

$$256 J(A) = \mathcal{S}_{perf}(A) - \lambda_v(t)\mathcal{P}_{viol} + \lambda_p(t)\mathcal{P}_{pers} + \lambda_d(t)\mathcal{P}_{div} \quad (5)$$

257 where \mathcal{S}_{perf} : raw performance score. $\mathcal{P}_{viol} \in \{0, 1\}$ is a
 258 binary penalty triggered by verification failure. \mathcal{P}_{pers} is
 259 calculated as the negative variance of performance scores
 260 across $N = 100$ Monte Carlo seeds to penalize brittle
 261 discoveries ($\mathcal{P}_{pers} = -\text{Var}(\{\mathbf{y}_i\}_{i=1}^{100})$). \mathcal{P}_{div} represents
 262 structural novelty, quantified as the symbolic divergence.

263 3.4.2. DYNAMIC ANNEALING AND PHASE SCHEDULING

264 To ensure convergence, the coefficients $\lambda(t)$
 265 follow a non-linear annealing trajectory: Constraint Hardening
 266 ($t < T_{early}$): λ_v is maximal
 267

268 to force the LLM to learn the *feasible manifold*
 269 \mathbb{M}_Φ . Global Exploration ($T_{early} \leq t < T_{mid}$): λ_d follows an exponential decay to encourage structural
 270 mutations. Robust Refinement ($t \geq T_{mid}$): λ_p increases
 271 linearly, shifting pressure toward *Persistence*.
 272

273 $J(A)$ is injected back into the Tripartite Proposer via a
 274 Contextual History Buffer. By providing the LLM with the
 275 triple $\{A_t, J_t, \xi_t\}$, where ξ acts as a Negative Prompt, the
 276 system transforms the search from a stochastic walk into a
 277 Directed Gradient-free Optimization that explicitly avoids
 278 known failure modes. Appendix B9 provides pseudocode
 279 for the complete closed loop procedure.

4. Experiment

4.1. Versatility: Cross-Domain Axiomatic Discovery

280 To empirically validate the versatility of our dual-layered
 281 representation, we benchmark AutoAxiom across six het-
 282 erogeneous domains ranging from random queue system
 283 (Krenzler, 2016) to high-fidelity physical systems (Zhang
 284 et al., 2013). By initializing the evolutionary loop from prim-
 285 itive baseline axioms (G1), the hyperparameters is shown in
 286 appendix B0.4(e.g. GPT-4o, $T = 0.9$), the $\mathcal{A}^2\mathcal{V}\mathcal{S}$ closed-
 287 loop system navigates the symbolic manifold defined by Ax-
 288 iomDSL and Core IR to challenge and surpass established
 289 industrial state-of-the-art strategies. This cross-disciplinary
 290 stress test confirms that the hierarchical decoupling of on-
 291 tological semantics (Nirenburg & Raskin, 2004) and com-
 292 putational topology (Edelsbrunner & Harer, 2010) allows
 293 for the discovery of effective control laws that remain in-
 294 accessible to fixed-rule parametric optimization (Shiraishi
 295 et al., 2025). As shown in Table 1, AutoAxiom continu-

Table 1. **Cross-Domain Evaluation of Scientific Axiom Discovery.** SRA (Appendix B0.1) is normalized such that G1 is anchored near 0.5 and the best evaluated baseline is anchored near 1.0; higher is better. AutoAxiom (Ours) consistently breaks the Pareto frontier (> 1.0) in five tasks. Baselines (G2/G3) are: **Queueing Network**: Static Priority/Lyapunov Feedback; **Service Center**: EDF Pre-emption/Agile Linear; **Software Opt**: Static Heuristics/Adaptive Thresholding; **Physical PDE**: Standard PID/Conservative PD; **Res. Allocation**: JSQ/Power-of-Two; **Composition**: PID SOTA/Stateless Coupling. Data: Mean \pm 95% CI over 100 runs.

Domain	Baseline (G1)	SOTA-1 (G2)	SOTA-2 (G3)	AutoAxiom (Ours)
Queueing Network	0.50 ± 0.01	0.51 ± 0.01	1.00 ± 0.04	1.74 ± 0.06
Service Center	0.51 ± 0.00	1.00 ± 0.01	0.94 ± 0.03	1.02 ± 0.01
Software Opt.	0.50 ± 0.00	0.94 ± 0.01	1.00 ± 0.01	1.02 ± 0.01
Physical PDE	0.50 ± 0.00	1.00 ± 0.02	0.59 ± 0.00	3.15 ± 0.21
Res. Allocation	0.53 ± 0.00	1.00 ± 0.02	0.58 ± 0.00	1.29 ± 0.05
Composition	0.52 ± 0.00	1.00 ± 0.01	0.60 ± 0.00	0.90 ± 0.00

296 ously improves efficiency in most environments by syn-
 297 thesizing high-dimensional symbolic control laws (Yan et al.,
 298 2022). As shown in Appendix B1, In queueing network,
 299 compared to Lyapunov-based linear feedback state-of-the-

art (SOTA)(Liang et al., 2025), AutoAxiom discovers a threshold-aware defense logic(Erbagci et al., 2016) that reduces latency by 62.8%. Notably, in the service-center (Appendix B2) and software optimization(Appendix B3), extreme baseline collapse triggers a denominator dilution effect(Price & Matthews, 2009), limiting the SRA score to 1.02; however, our framework significantly outperforms industrial preemption(Otamendi et al., 2025) and agile linear(Gao et al., 2006) SOTA in practical physical metrics. By introducing a tanh-gated(Chai et al., 2020) priority factor and a logarithmic S-shaped "reconfiguration gate,"(Sidhu et al., 2000) AutoAxiom stabilizes secondary queues at 2.61 seconds and compresses technical debt to a complexity of 0.17 (with an error rate as low as 0.09), achieving a superior multi-objective balance lacking in traditional heuristic algorithms(Kokash, 2005). In Appendix B4 the physical partial differential equation (PDE) domain , compared to conservative PD controllers(Lee & Lee, 2025), the evolved axiom, employing a saturation-based scaling method(Lu et al., 2020), operates safely near the theoretical CFL limit, reducing L^2 error by 76.4% and achieving an excellent SRA score of 3.15. In resource allocation (Appendix B5), AutoAxiom surpasses standard JSQ logic(Mukhopadhyay & Mazumdar, 2015) by using boundary-aware scaling to map nonlinear cost-utility envelopes, achieving a 133% throughput improvement and an SRA score of 1.29. Finally, in network physical synthesis (Appendix B6), AutoAxiom synthesizes a stateless coupling law(Bevir & Rhodes, 2011) that achieves 90% of the performance of a finely tuned PID(Zhao et al., 2025) axioms. Its main advantage lies in eliminating the computational overhead of integrating historical errors, thereby achieving low-latency hardware execution while maintaining industrial-grade stability. This cross-domain results marks a fundamental shift in design philosophy from human-centered linear design to high-dimensional nonlinear symbolic search spaces. The DSL/IR architecture can autonomously discover patterns that combine numerical accuracy and symbolic logic.

4.2. Interpretability: White-Box Control in Soft Robotics

Drawing inspiration from voxel-based soft robotics of Evgym(Bhatia et al., 2021), we design an Ice-Mud-Flat terrain simulation to evaluate the evolutionary trajectory of AutoAxiom in generating interpretable control laws.

As shown in figure 3 and Appendix B7.1, the system begins at Round 0 with a naive traveling wave, subsequently navigating a non-monotonic progress that validates the tripartite consensus mechanism of Equation 3. While Round 1 introduced slip-feedback for ice traversal, the logic misidentified viscous drag as traction loss, illustrating the "conservative trap" where the robot stalled in mud. Following this, Round 3 exhibited a "numerical hallucination" where the radical

innovator exploited simulation artifacts to achieve high velocities, though these ultra-high-frequency pulses were identified as physically infeasible by the verifier. After surviving a semantic collapse in Round 6 and oscillatory behavior in Round 8, the framework synthesized the optimal Round 9 axiom. By discovering "contact gating" a logic that idles actuators when contact is lost, the symbolic policy achieved approximately 95% of the performance of a high-parameter PPO model in Appendix B7.3 while offering superior analytical boundaries. On low-friction ice, AutoAxiom's discrete logic outperformed PPO (0.67s vs 1.10s), likely due to the exact constraints of the clamp operator which neural networks can only approximate through continuous functions. This transition from opaque weights to concise physical expressions provides a potential path for deploying interpretable control on resource-constrained embedded systems without requiring deep inference overhead.

4.3. Constraints & Intelligence: Constrained Discovery in Chemical Space

Inspired by the *Foundation Molecular Grammar* (FMG)(Sun et al., 2025), which demonstrated the capacity of generative foundation models to induce interpretable molecular graph languages for automated discovery, we evaluated AutoAxiom within a fragment-based drug design (FBDD) paradigm. The experimental dataset utilizes a carefully selected library of fragments, including key pharmacophores such as cyclohexane and pyridine, as well as some potentially toxic precursors with drug-like properties but low safety profiles, such as nitro and sulfonamide groups. Furthermore, heavy rigid linking groups were added to test the system's ability to maintain molecular weight constraints. We conducted a comparative evaluation of the system using conventional symbolic regression (PySR) as a representative of a general data fitting paradigm. This comparison aims to demonstrate that while symbolic regression performs well in curve fitting, it operates in a "semantic vacuum" lacking chemical priors or formal constraints, and therefore is prone to producing ineffective drugs in the event of a chemical space combinatorial explosion. As shown in Figure 4 and Appendix B8.6, the well trained PySR baseline model(Appendix B8.2) exhibits significant limitations due to the lack of inherent chemical prior knowledge and dynamic simulation incentive mechanisms. In our generative experiments, PySR struggles to generalize beyond static datasets; high-frequency numerical noise in the reward region hinders its active exploration, ultimately leading to overfitting and paralysis. Conversely, in the early exploration phase, AutoAxiom's initial axioms, designed to maximize numerical scores but lacking a physical basis, resulted in the generation of unbounded "obese molecules" a typical manifestation of the abuse of reward mechanisms.

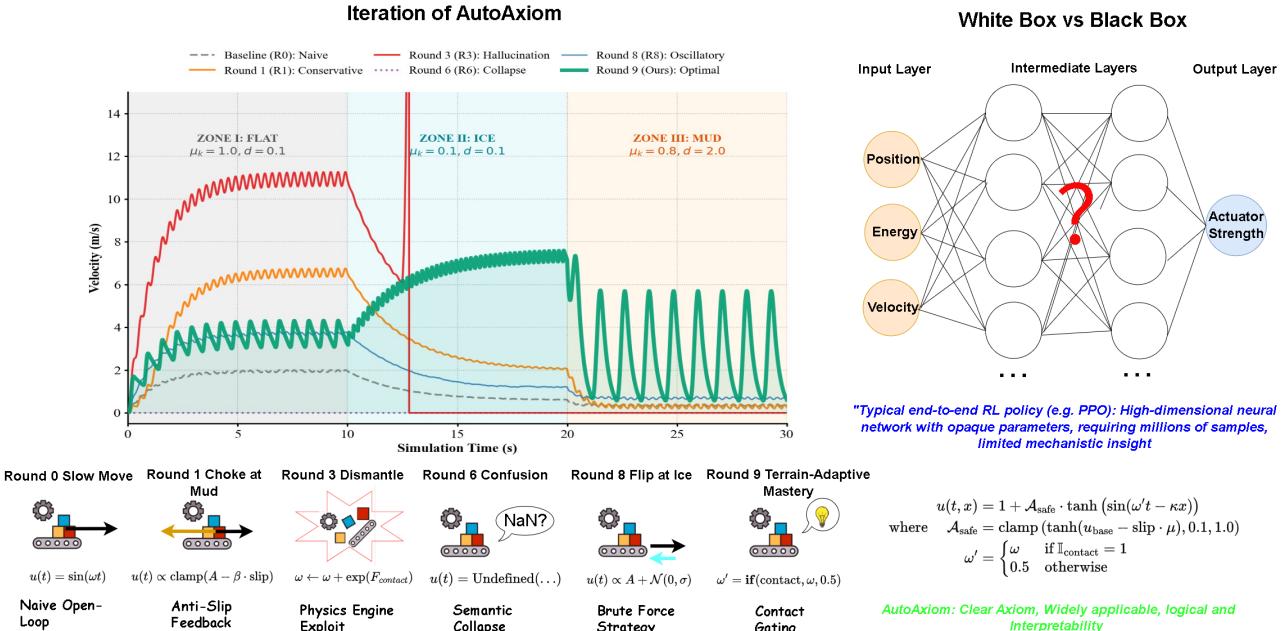


Figure 3. Case Study I: White-Box Control in Soft Robotics. (Left) The phylogeny of the control axiom. The system navigates through “Conservative Traps” (Round 1) and “Numerical Hallucinations” (Round 3) before discovering the optimal Phase-Resetting Logic in Round 9. **(Right)** A visual comparison of the policy architecture. Unlike the opaque neural weights of PPO (Black Box), AutoAxiom evolves an interpretable, concise symbolic formula (White Box). Ours outperforms PPO on Ice while PPO is faster on Flat and Mud; focus is interpretability and constraints

This “reward hacking” phase is critical, as it empirically confirms that numerical optimization alone is insufficient for scientific discovery. It highlights the necessity of the subsequent transition to constrained reasoning gatekeeper.

Through SMT formal verification in Appendix B8.3, AutoAxiom successfully internalized the Lipinski's Rule of Five provided as integrity constraints (Φ) into executable symbolic gating logic. By utilizing the logical failure mechanism (ξ) as a "negative gradient" in the symbolic space, the system learned to bridge the gap between abstract chemical principles and concrete fragment-selection policies. This demonstrates that AutoAxiom does not merely "follow" rules but synthesizes a compliant manifold projection that filters out toxic or oversized pharmacophores before they reach the simulation stage. The resulting molecules exhibit complex pharmacophores, high drug-likeness (QED), and realistic chemical structures. From this case, we demonstrate that the traditional Symbolic Regression (SR) paradigm collapses into 'Stagnation' within high-dimensional chemical spaces due to its lack of semantic grounding and subsequent overfitting of reward noise. In contrast, AutoAxiom resolves this by anchoring foundational LLM priors through formal logical filters, successfully transitioning from stochastic data-fitting to an intelligent discovery method that balances exploratory innovation with safety-critical constraints."

4.4. Ablation and Cost Report

To evaluate the structural necessity of AutoAxiom, we conducted a systematic ablation study by isolating core components, as summarized in Table 2. The results reveal that removing the Tripartite Consensus mechanism (Sec 3.2) leads to a significant drop in mean performance (0.6917) and a sharp increase in variance (± 0.3109). This instability stems from the loss of agent isolation and dialectical conflict defined in Equation 3; without the counterbalancing roles of F_{rad} and F_{con} , a single-role prompt tends to either converge prematurely to conservative local optima or propose radical, unstable axioms, resulting in erratic performance. A similar trend is observed in the No Iteration variant, which exhibits the highest variance (± 0.3876) and a 50% success rate. Deprived of historical lessons and the dynamic annealing incentives, the search process lacks the necessary corrective guidance to escape known failure modes. Furthermore, the No Verifier variant (*w/o* Sec 3.3) exhibits the most critical impact on system safety, with the violation rate surging to 12.20% and the success rate plummeting to 66%. Forensic analysis confirms that without the V_{smt} predicate in Equation 5, the system frequently proposes axioms that trigger simulator crashes or non-physical divergence, as there is no formal mechanism to intercept "Red Line" violations. Collectively, these findings empirically validate

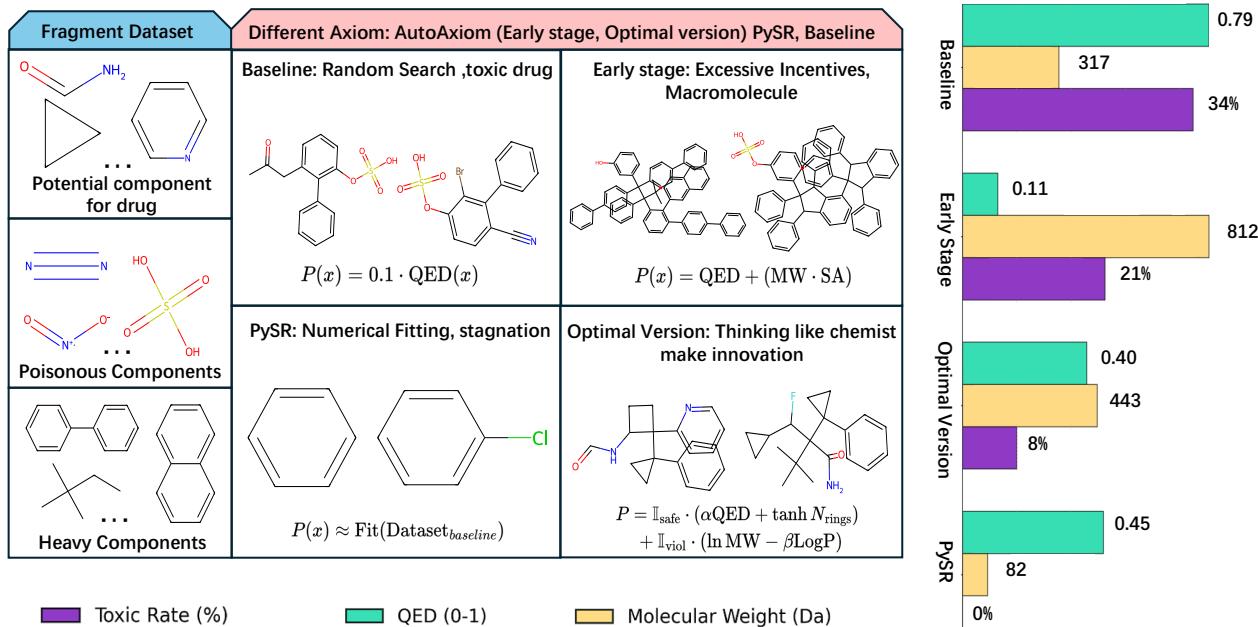
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

Figure 4. **Case Study II: Molecular Discovery** SMT-based formal gatekeeper filtering “obese molecules” and enforcing Lipinski’s Rule of Five. AutoAxiom ensures chemical validity and drug-likeness by tethering LLM priors to rigorous integrity constraints. PySR achieves 0% toxicity in Table 17 but shows low Steps Taken under the sequential protocol; AutoAxiom balances progress and constraints

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235
80236
80237
80238
80239
80240
80241
80242
80243
80244
80245
80246
80247
80248
80249
80250
80251
80252
80253
80254
80255
80256
80257
80258
80259
80260
80261
80262
80263
80264
80265
80266
80267
80268
80269
80270
80271
80272
80273
80274
80275
80276
80277
80278
80279
80280
80281
80282
80283
80284
80285
80286
80287
80288
80289
80290
80291
80292
80293
80294
80295
80296
80297
80298
80299
80300
80301
80302
80303
80304
80305
80306
80307
80308
80309
80310
80311
80312
80313
80314
80315
80316
80317
80318
80319
80320
80321
80322
80323
80324
80325
80326
80327
80328
80329
80330
80331
80332
80333
80334
80335
80336
80337
80338
80339
80340
80341
80342
80343
80344
80345
80346
80347
80348
80349
80350
80351
80352
80353
80354
80355
80356
80357
80358
80359
80360
80361
80362
80363
80364
80365
80366
80367
80368
80369
80370
80371
80372
80373
80374
80375
80376
80377
80378
80379
80380
80381
80382
80383
80384
80385
80386
80387
80388
80389
80390
80391
80392
80393
80394
80395
80396
80397
80398
80399
80400
80401
80402
80403
80404
80405
80406
80407
80408
80409
80410
80411
80412
80413
80414
80415
80416
80417
80418
80419
80420
80421
80422
80423
80424
80425
80426
80427
80428
80429
80430
80431
80432
80433
80434
80435
80436
80437
80438
80439
80440
80441
80442
80443
80444
80445
80446
80447
80448
80449
80450
80451
80452
80453
80454
80455
80456
80457
80458
80459
80460
80461
80462
80463
80464
80465
80466
80467
80468
80469
80470
80471
80472
80473
80474
80475
80476
80477
80478
80479
80480
80481
80482
80483
80484
80485
80486
80487
80488
80489
80490
80491
80492
80493
80494
80495
80496
80497
80498
80499
80500
80501
80502
80503
80504
80505
80506
80507
80508
80509
80510
80511
80512
80513
80514
80515
80516
80517
80518
80519
80520
80521
80522
80523
80524
80525
80526
80527
80528
80529
80530
80531
80532
80533
80534
80535
80536
80537
80538
80539
80540
80541
80542
80543
80544
80545
80546
80547
80548
80549
80550
80551
80552
80553
80554
80555
80556
80557
80558
80559
80560
80561
80562
80563
80564
80565
80566
80567
80568
80569
80570
80571
80572
80573
80574
80575
80576
80577
80578
80579
80580
80581
80582
80583
80584
80585
80586
80587
80588
80589
80590
80591
80592
80593
80594
80595
80596
80597
80598
80599
80600
80601
80602
80603
80604
80605
80606
80607
80608
80609
80610
80611
80612
80613
80614
80615
80616
80617
80618
80619
80620
80621
80622
80623
80624
80625
80626
80627
80628
80629
80630
80631
80632
80633
80634
80635
80636
80637
80638
80639
80640
80641
80642
80643
80644
80645
80646
80647
80648
80649
80650
80651
80652
80653
80654
80655
80656
80657
80658
80659
80660
80661
80662
80663
80664
80665
80666
80667
80668
80669
80670
80671
80672
80673
80674
80675
80676
80677
80678
80679
80680
80681
80682
80683
80684
80685
80686
80687
80688
80689
80690
80691
80692
80693
80694
80695
80696
80697
80698
80699
80700
80701
80702
80703
80704
80705
80706
80707
80708
80709
80710
80711
80712
80713
80714
80715
80716
80717
80718
80719
80720
80721
80722
80723
80724
80725
80726
80727
80728
80729
80730
80731
80732
80733
80734
80735
80736
80737
80738
80739
80740
80741
80742
80743
80744
80745
80746
80747
80748
80749
80750
80751
80752
80753
80754
80755
80756
80757
80758
80759
80760
80761
80762
80763
80764
80765
80766
80767
80768
80769
80770
80771
80772
80773
80774
80775
80776
80777
80778
80779
80780
80781
80782
80783
80784
80785
80786
80787
80788
80789
80790
80791
80792
80793
80794
80795
80796
80797
80798
80799
80800
80801
80802
80803
80804
80805
80806
80807
80808
80809
80810
80811
80812
80813
80814
80815
80816
80817
80818
80819
80820
80821
80822
80823
80824
80825
80826
80827
80828
80829
80830
80831
80832
80833
80834
80835
80836
80837
80838
80839
80840
80841
80842
80843
80844
80845
80846
80847
80848
80849
80850
80851
80852
80853
80854
80855
80856
80857
80858
80859
80860
80861
80862
80863
80864
80865
80866
80867
80868
80869
80870
80871
80872
80873
80874
80875
80876
80877
80878
80879
80880
80881
80882
80883
80884
80885
80886
80887
80888
80889
80890
80891
80892
80893
80894
80895
80896
80897
80898
80899
80900
80901
80902
80903
80904
80905
80906
80907
80908
80909
80910
80911
80912
80913
80914
80915
80916
80917
80918
80919
80920
80921
80922
80923
80924
80925
80926
80927
80928
80929
80930
80931
80932
80933
80934
80935
80936
80937
80938
80939
80940
80941
80942
80943
80944
80945
80946
80947
80948
80949
80950
80951
80952
80953
80954
80955
80956
80957
80958
80959
80960
80961
80962
80963
80964
80965
80966
80967
80968
80969
80970
80971
80972
80973
80974
80975
80976
80977
80978
80979
80980
80981
80982
80983
80984
80985
80986
80987
80988
80989
80990
80991
80992
80993
80994
80995
80996
80997
80998
80999
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235
80236
80237
80238
80239
80240
80241
80242
80243
80244
80245
80246
80247
80248
80249
80250
80251
80252
80253
80254
80255
80256
80257
80258
80259
80260
80261
80262
80263
80264
80265
80266
80267
80268
80269
80270
80271
80272
80273
80274
80275
80276
80277
80278
80279
80280
80281
80282
80283
80284
80285
80286
80287
80288
80289
80290
80291
80292
80293
80294
80295
80296
80297
80298
80299
80300
80301
80302
80303
80304
80305
80306
80307
80308
80309
80310
80311
80312
80313
80314
80315
80316
80317
80318
80319
80320
80321
80322
80323
80324
80325
80326
80327
80328
80329
80330
80331
80332
80333
80334
80335
80336
80337
80338
80339
80340
80341
80342
80343
80344
80345
80346
80347
80348
80349
80350
80351
80352
80353
80354
80355
80356
80357
80358
80359
8036

440 **Impact Statement**

441 This paper presents AutoAxiom, a framework designed to
 442 bridge the gap between large language models and rigorous
 443 scientific discovery through autonomous symbolic axiom
 444 modification and formal verification. The societal and ethi-
 445 cal implications of this work are twofold:

446 **Positive Impact on Reliable AI for Science:** By integrating
 447 SMT-based formal verification as a "Red Line" gate-
 448 keeper, AutoAxiom provides a blueprint for building self-
 449 correcting AI systems that adhere to immutable physical
 450 laws and safety constraints. This reduces the risk of "nu-
 451 mercial hallucinations" in safety-critical domains such as
 452 healthcare triage, infrastructure control, and drug design, en-
 453 ensuring that AI-generated scientific insights are not only high-
 454 performing but also mathematically auditable and physically
 455 consistent.

456 **Ethical Considerations and Safeguards:** While the frame-
 457 work enables accelerated discovery in sensitive areas like
 458 molecular design, the modular design allows for the strict
 459 imposition of ethical and "Integrity Constraints". For in-
 460 stance, in the chemical domain, AutoAxiom successfully
 461 internalized toxicity filters and pharmacophore constraints
 462 into its evolutionary loop, demonstrating that automated
 463 discovery can be programmatically tethered to safety stan-
 464 dards. We emphasize that such frameworks should always
 465 be deployed with human-in-the-loop validation and domain-
 466 specific oversight to prevent the discovery of harmful sub-
 467 stances or unstable control policies

468 **References**

469 AbdusSalam, S., Abel, S., and Romão, M. C. Symbolic re-
 470 gression for beyond the standard model physics. *Physical*
 471 *Review D*, 111(1):015022, 2025.

472 Aglietti, V., Ktena, I., Schrouff, J., Sgouritsa, E., Ruiz, F. J.,
 473 Malek, A., Bellot, A., and Chiappa, S. Funbo: Discovering
 474 acquisition functions for bayesian optimization with
 475 funsearch. *arXiv preprint arXiv:2406.04824*, 2024.

476 Aigner, M. *Combinatorial search*. John Wiley & Sons, Inc.,
 477 1988.

478 Alter, S. Can an llm use work system axioms when de-
 479 scribing work systems for requirements analysis? In
 480 *International Conference on Business Process Modeling,*
 481 *Development and Support*, pp. 245–253. Springer, 2025.

482 Bevir, M. and Rhodes, R. A. The stateless state. *The SAGE*
 483 *handbook of governance*, pp. 203–17, 2011.

484 Bhatia, J., Jackson, H., Tian, Y., Xu, J., and Matusik, W.
 485 Evolution gym: A large-scale benchmark for evolving
 486 soft robots. *Advances in Neural Information Processing*
 487 *Systems*, 34:2201–2214, 2021.

488 Chai, Y., Jin, S., and Hou, X. Highway transformer: Self-
 489 gating enhanced self-attentive networks. *arXiv preprint*
 490 *arXiv:2004.08178*, 2020.

491 De Moura, L. and Bjørner, N. Z3: An efficient smt solver.
 492 In *International conference on Tools and Algorithms for*
 493 *the Construction and Analysis of Systems*, pp. 337–340.
 494 Springer, 2008.

495 DeRose, K. "bamboozled by our own words": Semantic
 496 blindness and some arguments against contextualism.
 497 *Philosophy and Phenomenological Research*, 73(2):316–
 498 338, 2006.

499 Dong, J. and Zhong, J. Recent advances in symbolic regres-
 500 sion. *ACM Computing Surveys*, 57(11):1–37, 2025.

501 Edelsbrunner, H. and Harer, J. *Computational topology: an*
 502 *introduction*. American Mathematical Soc., 2010.

503 Erbagci, B., Erbagci, C., Akkaya, N. E. C., and Mai, K. A
 504 secure camouflaged threshold voltage defined logic fam-
 505 ily. In *2016 IEEE International symposium on hardware*
 506 *oriented security and trust (HOST)*, pp. 229–235. IEEE,
 507 2016.

508 Fu, V. Ai for science: Opportunities, challenges, and future
 509 directions. *Authorea Preprints*, 2025.

510 Gao, S., Sambell, A., and Zhong, S. Polarization-agile
 511 antennas. *IEEE Antennas and Propagation Magazine*, 48
 512 (3):28–37, 2006.

513 Gottweis, J., Weng, W.-H., Daryin, A., Tu, T., Palepu, A.,
 514 Sirkovic, P., Myaskovsky, A., Weissenberger, F., Rong,
 515 K., Tanno, R., et al. Towards an ai co-scientist. *arXiv*
 516 *preprint arXiv:2502.18864*, 2025.

517 Gulati, A., Miranda, B., Chen, E., Xia, E., Fronsdal, K.,
 518 de Moraes Dumont, B., and Koyejo, S. Putnam-axiom:
 519 A functional and static benchmark. In *2nd AI for Math*
 520 *Workshop @ ICML 2025*, 2025.

521 Holt, S., Qian, Z., and van der Schaar, M. Deep generative
 522 symbolic regression. *arXiv preprint arXiv:2401.00282*,
 523 2023.

524 Joel, S., Wu, J., and Fard, F. A survey on llm-based code
 525 generation for low-resource and domain-specific program-
 526 ming languages. *ACM Transactions on Software Engi-
 527 neering and Methodology*, 2024.

528 Kalaivani, M., Suganya, V., Suresh, N., and Catherine, S.
 529 The next wave in marketing: Data science in the age of
 530 generative ai. In *Navigating Data Science*, pp. 13–26.
 531 Emerald Publishing Limited, 2025.

495 Kim, S. Cross-axiomatic evolution: A formal model of
 496 mutual axiom acceptance between humans and artificial
 497 intelligence. 2025.

498 Kokash, N. An introduction to heuristic algorithms. *De-
 499 partment of Informatics and Telecommunications*, 1:1–7,
 500 2005.

502 Krenzler, R. *Queueing systems in a random environment*.
 503 PhD thesis, Staats-und Universitätsbibliothek Hamburg
 504 Carl von Ossietzky, 2016.

506 Lawal, Z. K., Yassin, H., Lai, D. T. C., and Che Idris, A.
 507 Physics-informed neural network (pinn) evolution and
 508 beyond: A systematic literature review and bibliometric
 509 analysis. *Big Data and Cognitive Computing*, 6(4):140,
 510 2022.

512 Lee, K. and Lee, C. String stability analysis and design
 513 guidelines for pd controllers in adaptive cruise control
 514 systems. *Sensors*, 25(11):3518, 2025.

516 Li, H., Wang, X., Zhang, Z., and Zhu, W. Out-of-distribution
 517 generalization on graphs: A survey. *IEEE Transactions
 518 on Pattern Analysis and Machine Intelligence*, 2025.

519 Liang, G., Xie, X., Pan, W., Gu, Y., Chen, Z., Li, Z., and
 520 Zeng, W. Static output feedback control for linear systems
 521 via multiple lyapunov functions. *IEEE Access*, 2025.

523 Lu, Z., Long, B., and Yang, S. Saturation based iterative
 524 approach for single image dehazing. *IEEE Signal Pro-
 525 cessing Letters*, 27:665–669, 2020.

526 Ma, P., Jones, B. T., Wang, T.-H., Guo, M., Lipiec,
 527 M. P., Gan, C., and Matusik, W. Newton to einstein:
 528 Axiom-based discovery via game design. *arXiv preprint
 529 arXiv:2509.05448*, 2025.

531 Ma, Y. J., Liang, W., Wang, G., Huang, D.-A., Bastani, O.,
 532 Jayaraman, D., Zhu, Y., Fan, L., and Anandkumar, A.
 533 Eureka: Human-level reward design via coding large
 534 language models. *arXiv preprint arXiv:2310.12931*, 2023.

536 Mukhopadhyay, A. and Mazumdar, R. R. Analysis of ran-
 537 domized join-the-shortest-queue (jsq) schemes in large
 538 heterogeneous processor-sharing systems. *IEEE Trans-
 539 actions on Control of Network Systems*, 3(2):116–126,
 540 2015.

541 Nirenburg, S. and Raskin, V. *Ontological semantics*. Mit
 542 Press, 2004.

544 Otamendi, U., Martinez, I., Belaunzarán, X., Artetxe, A.,
 545 Franco, J., Uribe, A., Olaizola, I. G., and Sierra, B. An
 546 analytics-based framework for optimizing resource al-
 547 location and preemptive scheduling in manufacturing.
 548 *Decision Analytics Journal*, pp. 100596, 2025.

Paassen, B., Grattarola, D., Zambon, D., Alippi, C., and
 Hammer, B. Graph edit networks. In *International Con-
 ference on Learning Representations*, 2020.

Price, P. C. and Matthews, T. V. From group diffusion to
 ratio bias: Effects of denominator and numerator salience
 on intuitive risk and likelihood judgments. *Judgment and
 Decision Making*, 4(6):436–446, 2009.

Reddy, C. K. and Shojaee, P. Towards scientific discov-
 ery with generative ai: Progress, opportunities, and chal-
 lenges. In *Proceedings of the AAAI Conference on Artifi-
 cial Intelligence*, volume 39, pp. 28601–28609, 2025.

ŞAHİN, E., Arslan, N. N., and Özdemir, D. Unlocking
 the black box: an in-depth review on interpretability,
 explainability, and reliability in deep learning. *Neural
 Computing and Applications*, 37(2):859–965, 2025.

Santos, C. F. G. D. and Papa, J. P. Avoiding overfitting: A
 survey on regularization methods for convolutional neural
 networks. *ACM Computing Surveys (Csur)*, 54(10s):1–25,
 2022.

Sapel, P., Molinas Comet, L., Dimitriadis, I., Hopmann, C.,
 and Decker, S. A review and classification of manufac-
 turing ontologies. *Journal of intelligent manufacturing*,
 36(6):3669–3693, 2025.

Shao, J., Lu, Y., and Yang, J. Benford’s curse: Tracing digit
 bias to numerical hallucination in llms. *arXiv preprint
 arXiv:2506.01734*, 2025.

Shiraishi, H., Hayamizu, Y., Hashiyama, T., Takadama,
 K., Ishibuchi, H., and Nakata, M. Evolutionary co-
 optimization of rule shape and fuzziness in rule-based
 machine learning. In *Proceedings of the Genetic and
 Evolutionary Computation Conference Companion*, pp.
 71–72, 2025.

Sidhu, R., Wadhwa, S., Mei, A., and Prasanna, V. K. A self-
 reconfigurable gate array architecture. In *International
 Workshop on Field Programmable Logic and Applica-
 tions*, pp. 106–120. Springer, 2000.

Sun, M., Yuan, W., Liu, G., Matusik, W., and Chen, J.
 Foundation molecular grammar: Multi-modal foundation
 models induce interpretable molecular graph languages.
arXiv preprint arXiv:2505.22948, 2025.

Tonda, A. Review of pysr: high-performance symbolic
 regression in python and julia, 2025.

Wadayama, T., Igarashi, K., and Takahashi, T. Physics-
 aware sparse signal recovery through pde-governed mea-
 surement systems. *arXiv preprint arXiv:2501.13414*,
 2025.

550 Wang, J. A tutorial on llm reasoning: Relevant methods
 551 behind chatgpt o1. *arXiv preprint arXiv:2502.10867*,
 552 2025.

553

554 Wang, R., Wang, X., Gao, C., Chong, C. Y., Xia, X., and
 555 Liao, Q. Axiom: Benchmarking llm-as-a-judge for code
 556 via rule-based perturbation and multisource quality cali-
 557 bration. *arXiv preprint arXiv:2512.20159*, 2025.

558

559 Xu, F., Hao, Q., Zong, Z., Wang, J., Zhang, Y., Wang,
 560 J., Lan, X., Gong, J., Ouyang, T., Meng, F., et al. To-
 561 wards large reasoning models: A survey of reinforced
 562 reasoning with large language models. *arXiv preprint*
 563 *arXiv:2501.09686*, 2025a.

564

565 Xu, F., Lin, Q., Han, J., Zhao, T., Liu, J., and Cambria, E.
 566 Are large language models really good logical reasoners?
 567 a comprehensive evaluation and beyond. *IEEE Transac-
 568 tions on Knowledge and Data Engineering*, 2025b.

569

570 Yan, J.-J., Yang, G.-H., and Liu, X.-X. A multigain-
 571 switching-mechanism-based secure estimation scheme
 572 against dos attacks for nonlinear industrial cyber-physical
 573 systems. *IEEE Transactions on Industrial Electronics*, 70
 574 (5):5094–5103, 2022.

575

576 Yi, R., Georgiou, D., Liu, X., and Athanasiou, C. E.
 577 Mechanics-informed, model-free symbolic regression
 578 framework for solving fracture problems. *Journal of
 579 the Mechanics and Physics of Solids*, 194:105916, 2025.

580

581 Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen, A.,
 582 and Wu, Y. The surprising effectiveness of ppo in coopera-
 583 tive multi-agent games. *Advances in neural information
 584 processing systems*, 35:24611–24624, 2022.

585

586 Yu, L., Cao, M., Cheung, J. C., and Dong, Y. Mechanistic
 587 understanding and mitigation of language model non-
 588 factual hallucinations. In *Findings of the Association
 589 for Computational Linguistics: EMNLP 2024*, pp. 7943–
 7956, 2024.

590

591 Yu, Z., Idris, M. Y. I., and Wang, P. Physics-constrained
 592 symbolic regression from imagery. In *2nd AI for Math
 593 Workshop@ ICML 2025*, 2025.

594

595 Zhang, J., Huang, J., Yao, H., Liu, S., Zhang, X., Lu, S.,
 596 and Tao, D. R1-vl: Learning to reason with multimodal
 597 large language models via step-wise group relative policy
 598 optimization. *arXiv preprint arXiv:2503.12937*, 2025a.

599

600 Zhang, X., Zhang, X., Li, Q., Ruan, J., and Li, W. A novel
 601 deep reinforcement learning framework fusing knowl-
 602 edge and probabilistic modeling for prognostic and main-
 603 tenance of aircraft engines. *Engineering Research Ex-
 604 press*, 7(2):025570, 2025b.

605

Zhang, Y., Xie, F., Dong, Y., Yang, G., and Zhou, X. High
 fidelity virtualization of cyber-physical systems. *Inter-
 national journal of modeling, simulation, and scientific
 computing*, 4(02):1340005, 2013.

Zhao, D., Gao, C., Li, J., Fu, H., and Ding, D. Pid control
 and pi state estimation for complex networked systems:
 A survey. *International Journal of Systems Science*, pp.
 1–16, 2025.

605 Appendix A: Implementation Details and 606 Symbolic Logic

607 This appendix provides the technical specifications for the
608 symbolic framework of AutoAxiom. We detail the prompt
609 engineering strategy, the formal schema of the Intermediate
610 Representation (IR), and the automated safeguarding
611 mechanisms based on the system's architecture.

613 614 A1. Multi-Agent Prompt Templates

615 The core of AutoAxiom's creativity is driven by the Tripartite
616 Consensus Axiom Proposer, comprising A_3 (Radical
617 Innovator), A_4 (Conservative Guardian), and A_5 (Consensus
618 Maker) agents. Below is the exact system prompt used
619 by the A_3 Radical Innovator agent, rendered directly from
620 the source code:

621 *Listing 1. System Prompt for A3 Agent*

622
623
624 You are an elite Theoretical Physicist and
625 Control Systems Engineer. Your task is
626 to redesign the mathematical logic at a
627 specific 'Target Slot' to improve
628 system performance.

629 [GLOBAL AWARENESS]:

630 Read 'full_ir_context' carefully.
631 Understand how 'rho', 'u', and 'Q_len'
632 interact globally before modifying the
633 specific slot. If this is a Co-
634 Simulation, pay attention to coupling
635 variables (e.g., Temperature affecting
636 Service Rate). The new variables you
637 introduced can only use the names from
638 DVM.

639 [OPERATORS TOOLKIT - SCIENTIFIC DISCOVERY]:
640 You must employ these specific axiom
641 transformation operators to guide your
642 modification:

- 643 1. OP_RECAST: Maintain the physical or
644 mathematical meaning while changing the
645 descriptive language or base.
- 646 2. OP_MAP: Map objects to another
647 representation or space.
- 648 3. OP_TRANSFORM: Introduce specific
649 mathematical assumptions or expansions
650 for derivation or approximation.
- 651 4. OP_REDUCE: Reduce the complexity or the
652 number of variables in an axiom or
653 system.
- 654 5. OP_SUBSTITUTE: Replace a general
655 component with a specific instance or
656 another equivalent component.
- 657 6. OP_EQUIV: Establish a relationship of
658 equivalence between two seemingly
659 different axioms or systems.
- 660 7. OP_PROMOTE: Elevate a secondary or
661 specific property to a fundamental
662 axiom or principle.
- 663 8. OP_BOUNDARY: Define or transform the

664 limits or constraints of a system to
665 ensure global consistency.

- 666 9. OP_DYNAMICS: Write or transform the
667 equations or dynamical forms that
668 govern the evolution of a system.
- 669 10. OP_STATISTICAL: Rewrite deterministic
670 axioms as statistical or expectation
671 values or probability rules.

680 [CONTROL THEORY GUIDELINES]:

- 681 - Avoid Magic Numbers: Derive coefficients
682 from physical parameters (e.g., 'Cooling_Coeff') rather than guessing
683 random floats.
- 684 - Use Feedback: Implement Proportional (P)
685 or Proportional-Integral (PI) control
686 logic.
- 687 - Prevent Deadlock: Ensure rates never drop
688 to exactly 0.0 unless intended. Use 'max(0.1, ...)' to ensure Liveness.

689 [STRICT CONSTRAINT]:

- 690 1. OUTPUT: Only output the JSON for 'draft_leaf'.
- 691 2. SCHEMA: Adhere to 'AxiomExpr' Schema.
Variables must be {"ref": "name"}.
- 692 3. VARS: You can introduce new variables if
they exist in the Domain Vocabulary
Mapping (DVM).

700 The A4 agent serves as a Reliability Engineer, focusing on
701 identifying edge-case failures and ensuring physical stability.

711 *Listing 2. System Prompt for A4 Agent*

712 You are a Senior Reliability Engineer.
713 Your job is to catch dangerous "bugs" in
714 the Radical Innovator's proposal.

715 [RESPONSIBILITY]:

- 716 1. Global Safety: Check if the radical
717 change conflicts with global
718 constraints (in 'full_ir_context').
- 719 2. Liveness Check: Does the new formula
720 allow critical rates to drop to 0? (Deadlock
721 risk).
- 722 3. Stability Check: Watch for "Bang-Bang"
723 control (oscillating between min/max).
Suggest smoothing or hysteresis.
- 724 4. DVM Compliance: Ensure all new variables
725 exist in the DVM.
- 726 5. Schema: Verify syntax.

727 Output a safe version of the leaf node.

738 The A5 agent acts as the Chief Architect, balancing the
739 innovation of A3 with the safety requirements of A4.

A2. AxiomDSL Syntax and Core IR Specification

```

660 Listing 3. System Prompt for A4 Agent
661 You are the Chief Architect. You make the
662 final decision.
663 Synthesize the 'radical\_proposal' and 'conservative\_review'.
664
665 [DECISION LOGIC]:
666 1. Prioritize Validity: The system must not
667     crash (NaN, infinite loops).
668 2. Prioritize Performance: If Radical is
669     safe, prefer the innovation.
670 3. Ensure Mathematical Soundness: The logic
671     should align with the physics derived
672     in A3.
673
674 Ensure the 'final\_leaf' is valid JSON and
675     mathematically sound.
676
677 The AxiomDSL serves as a high-level declarative lan-
678 guage for scientific modeling, which is subsequently low-
679 ered into the Core Intermediate Representation (Core IR)
680 for automated reasoning and simulation. The IR is for-
681 mally defined as a recursive Directed Acyclic Graph (DAG),
682  $\mathcal{G} = (N, L, \mathcal{O}, V, \phi)$ , where every node is strictly typed and
683 grounded in the Domain Vocabulary Mapping (DVM).
684
685 The AxiomDSL (as seen in input_axioms_*.json) organ-
686 izes domain knowledge into seven functional modules
687 to ensure a complete system description:
688
689 


690     - params: Immutable global constants (e.g.,  $\alpha_{base}$ ,  $\lambda_p$ )
691         with mandatory bounds and default values.

692
693     - symbols: Dynamic variables categorized into state
694         (physical status), control (modifiable logic), and
695         aux (sensors).

696
697     - rules: Procedural logic containers using assign for
698         deterministic updates and guarded for conditional
699         interventions.

700
701     - stochastic: Probabilistic definitions (e.g., Poisson,
702         Normal) linked to physical rates.

703
704     - temporal: Global safety properties ( $\Box$ ) and liveness
705         targets ( $\Diamond$ ) defined via Linear Temporal Logic (LTL).

706
707     - fixpoints: Declarative evolution laws for iterative state
708         updates.

709
710     - boundary: Spatial constraints (e.g., dirichlet,
711         neumann) for field-based simulations.

712
713 In the physical field domain, the DSL defines the coefficients
714 of partial differential equations. The following example
715 demonstrates a pixel-level mapping of a diffusion axiom.
716

```

AxiomDSL Representation: The original DSL specifies a base thermal diffusivity α .

```
{
  "name": "alpha",
  "type": "real",
  "role": "control",
  "unit": "m^2/s",
  "rhs": { "ref": "alpha_base" }
}
```

Evolved Core IR Representation: When the **A3 Radical Innovator** applies an `OP_TRANSFORM`, the IR expands into a complex recursive tree to model non-linear saturation: $\alpha = \alpha_{base} \cdot \exp(1.0 - u_{mean})$.

```
{
  "node_type": "Assignment",
  "lhs": "alpha",
  "rhs": {
    "node_type": "OperatorNode",
    "op": "*",
    "args": [
      { "node_type": "ReferenceNode", "ref": "alpha_base", "meta": { "role": "param" } },
      {
        "node_type": "FunctionNode",
        "op": "exp",
        "args": [
          {
            "node_type": "OperatorNode",
            "op": "-",
            "args": [
              { "node_type": "ValueNode", "val": 1.0, "type": "real" },
              { "node_type": "ReferenceNode", "ref": "u_mean", "meta": { "unit": "T" } }
            ]
          }
        ]
      }
    ],
    "provenance": { "agent": "A3_Radical_Innovator", "op": "OP_TRANSFORM" }
  }
}
```

In the queueing domain, the IR must bridge discrete states (Q_{len}) with continuous service rates (u) while enforcing liveness.

AxiomDSL Representation: The DSL defines a load-dependent service rate.

```
{
  "type": "assign",
  "lhs": "u",
  "rhs": { "op": "tanh", "args": [ { "ref": "Q_len" } ] }
}
```

```

715 }
716
717
718 Lowered Core IR with Liveness Wrapper: The com-
719 piler automatically injects a max operator to satisfy the Con-
720 trol Theory Guideline of preventing deadlocks ( $u > 0.1$ ).
721
722 {
723     "type": "assign",
724     "lhs": "u",
725     "rhs": {
726         "node_type": "FunctionNode",
727         "op": "max",
728         "args": [
729             { "node_type": "ValueNode", "val": 0.1 },
730             {
731                 "node_type": "OperatorNode",
732                 "op": "+",
733                 "args": [
734                     { "ref": "mu_p", "meta": { "role": "rate" } },
735                     { "op": "tanh", "args": [ { "ref": "Q_len" } ] }
736                 ]
737             }
738         ],
739         "metadata": { "is_liveness_critical": true }
740     }
741 }

```

To ensure sound symbolic execution, the IR maps all DSL primitives to rigorous mathematical functions.

Category	IR Operator	Symbolic Representation
Arithmetic	$+, -, *, /, ^$	$a + b, a - b, a \times b, a \times b, a^b$
Non-linear	\exp, \tanh, \ln, \sqrt	$\exp(x), \tanh(x), \ln(x)$
Statistics	mean, SD, max, min	$\mathbb{E}[X], \sigma(X), \max(X), \min(X)$
Temporal	always, eventually	$\Box\phi, \Diamond\phi$
Dynamics	$dt, \text{laplacian}, \text{grad}$	$\frac{\partial}{\partial t}, \nabla^2, \nabla$

Table 3. Formal Mapping of AxiomDSL Operators to Symbolic Logic.

A3. DVM and Grammar Specification

This section details the Domain Vocabulary Mapping (DVM) schema. Each DVM is a JSON structure specifying \mathcal{N} (symbols with type/unit/role), \mathcal{O} (operator signatures), Υ (units), and Φ (constraints). Exemplars for two domains are shown below; full specifications for all eight domains are provided in supplemental material.

DVM Schema (Queueing Domain Exemplar)

```

765 {
766     "domain": "queueing",
767     "symbols": {
768         "lambda_n": { "type": "real", "unit": "1/s", "role": "rate", }
769     }

```

```

        "desc": "Poisson arrival
        rate",
        "W_n": { "type": "real", "unit": "s", "role": "state", "desc": "average queueing
        delay" },
        // ... 27 additional symbols (see
        supplemental material)
    },
    "operators": {
        "sum": { "sig": ["real[]", "real"], "unit": "auto" },
        "if": { "sig": ["bool", "real", "real", "real"], "unit": "auto" }
        // ... 15 additional operators
    },
    "constraints": {
        "stability": "rho_tot < 1",
        "power_bounds": "P_min <= P <= P_max"
        // ... 2 additional constraints
    }
}

```

DVM Schema (Molecular Domain Exemplar)

```

{
    "domain": "molecular",
    "symbols": {
        "mw": { "type": "real", "unit": "g/mol", "role": "state", "desc": "Molecular Weight" },
        "qed": { "type": "real", "unit": "1", "role": "metric", "desc": "Drug-likeness [0,1]" }
        // ... 18 additional pharmacophore
        descriptors
    },
    "operators": [ "tanh", "sigmoid", "piecewise" ],
    "constraints": {
        "lipinski_mw": "mw <= 500",
        "lipinski_hba": "num_h_acceptors <= 10"
        // ... 4 additional Lipinski rules
    }
}

```

AxiomDSL Grammar v1.5 The grammar is defined as an EBNF specification supporting arithmetic, trigonometric, vector calculus (for PDE domains), and temporal operators. Key productions include:

```

axiom_file := use_stmt* symbol_stmt*
            param_stmt*
            rule_stmt* contract_stmt*
rule_stmt := assign | guarded | piecewise
            | stochastic
            | temporal | boundary
guarded := "when" bexpr ":" rule_stmt
piecewise := "piecewise" "(" bexpr ":" expr ) ")"
boundary := "boundary" (dirichlet|neumann )

```

```

770
771         " (" axis "==" value ")" ":" "
772         u_assign
773         temporal := ("always" | "eventually") "(
774             bexpr ")"
775         // Full EBNF and 40 built-in operators in
776         // supplemental material
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

```

Note on Reproducibility. Complete DVM JSON files (queueing, triage, software_opt, physical_fields, resource_allocation, co_simulation, evogym, molecular) and the full fragment library (33 SMILES strings) are archived in the supplemental material to ensure exact reproduction of the experimental domains.

Appendix B: Simulators and Details of Experiments

B0.1. Scaled Relative Advantage (SRA) Protocol

Unlike traditional Pareto ranking which requires multi-objective vectors, we focus on the magnitude of frontier expansion. We define the Baseline (G1) as the anchor point (0.5) and the current State-of-the-Art (SOTA) as the efficiency frontier (1.0). The Scaled Relative Advantage (SRA) explicitly quantifies how far an agent pushes beyond this known limit:

$$S_{\text{agent}} = 0.5 + 0.5 \times \frac{P_{\text{agent}} - P_{\text{G1}}}{|P_{\text{SOTA}^*} - P_{\text{G1}}|}$$

This metric serves as a proxy for Pareto Frontier Expansion:

- $S > 1.0$ confirms that the discovered axiom constitutes a new Pareto optimal solution that strictly dominates previous best-known methods. The P represent the Physics Scores in each domain.

B0.2. Rationalization of Objective Physical Metrics Physical Scores

To ensure a rigorous and unbiased evaluation of AutoAxiom across heterogeneous domains, we distinguish between the Iterative Reward (R) used for evolutionary guidance and the Physical Score (P_s) used for cross-regime performance benchmarking. The design of P_s adheres to three fundamental principles of axiomatic discovery: Bounded Monotonicity Mapping: All physical costs (e.g., waiting time W_q , error rate ER , or L_2 error) are mapped into a dimensionless utility space $[0, 100]$ using the standard reciprocal form $100/(1 + \sum \text{Cost})$. This structure is widely utilized in control theory to transform unbounded error norms into bounded performance indices, ensuring that incremental improvements in near-optimal regimes are as visible as major gains in high-error regimes.

Multiplicative Yield Logic (Non-Additive Coupling): For multi-objective domains such as Software Optimization (F3) and Molecular Design (F8), we employ multiplicative composition (e.g., $P_s \propto \Phi \cdot (1 - ER)$). Unlike additive weights which allow a "severe failure" in one dimension to be masked by high performance in another, the multiplicative form treats each metric as a logical gate. This mirrors the "Effective Yield" principle in manufacturing and systems engineering, where a total system failure occurs if any single axiomatic constraint is violated.

Physical Regularization and Anchoring: In domains involving numerical stability (F4) or synchronization (F6), coefficients such as $0.1 \cdot TV$ are derived from Tikhonov Regularization principles. These coefficients act as "anchoring factors" that penalize non-physical chattering or systemic

noise. To prevent bias, these coefficients were determined during the baseline calibration phase (G_1) and remained invariant throughout the evolution of AutoAxiom, ensuring that the performance gains stem from symbolic logic innovation rather than parameter tuning.

B0.3. Sigmoid Normalization Protocol (S-Score)

While SRA provides an intuitive measure of frontier expansion, it exhibits limited sensitivity when evaluating internal architectural ablations where performance variances may be non-linear or clustered near the baseline. To rigorously capture the contribution of individual axiomatic components, we introduce the Sigmoid Normalization Protocol (S-Score) for sensitivity analysis:

$$S = \frac{1}{1 + \exp\left(-2 \cdot \frac{R_{\text{agent}} - R_{\text{base}}}{\sigma}\right)} \quad (6)$$

where R_{base} is the anchor reward derived from the G_1 baseline, and σ is a domain-specific scaling factor that determines the sensitivity gradient. This protocol offers three distinct advantages for ablation studies:

- **High Midpoint Sensitivity:** The S-Score is centered at 0.5 when $R_{\text{agent}} = R_{\text{base}}$. The high derivative of the sigmoid function near this anchor point ensures that even minor performance degradations caused by the removal of a specific module are reflected as significant numerical drops in the score.
- **Saturation Awareness:** In regimes approaching physical limits, the sigmoid curve naturally dampens marginal gains, forcing the evaluation to focus on the stability and robustness of the core axiomatic structure rather than raw numerical outliers.
- **Cross-Domain Calibration:** By assigning domain-specific σ values (e.g., $\sigma = 500$ for Triage vs. $\sigma = 150$ for Physical PDE), we normalize heterogenous reward distributions into a unified $[0, 1]$ interval, allowing for the calculation of a robust Overall S-Score across all six domains.

B0.4. Hyperparameters and Model Configurations

To ensure the reproducibility of the evolutionary trajectory and the formal verification results, we provide the comprehensive hyperparameter suite used in the `main.py` orchestration and simulation adapters. All experiments were conducted using the **DSPy (v2.4.9)** framework to manage the tripartite agent interactions.

Dynamic Weight Scheduling As implemented in the `calculate_dspy_metric` function, the coefficients for

the dynamic objective function $J(A)$ follow a non-linear trajectory to balance exploration and stability:

- **Violation Penalty** (λ_v): $\lambda_v(t) = \Lambda_0 \cdot e^{-t/T_{\text{rise}}}$. Notably, for proposals achieving superior performance (raw score > 10.0), a $0.2 \times$ multiplier is applied to the penalty to prioritize efficiency discovery.
- **Persistence Reward** (λ_p): $\lambda_p(t) = \Lambda_0 \cdot (1 - e^{-t/T_{\text{stab}}})$, ensuring the system prioritizes "white-box" robustness in later generations.
- **Diversity Reward** (λ_d): $\lambda_d(t) = \Lambda_0 \cdot \max(0, 1 - \frac{2t}{T_{\text{total}}})$, effectively shifting the search from high-entropy jumps to local manifold refinement.

Diversity Metric The structural novelty \mathcal{P}_{div} is calculated by comparing the serialized byte-length of the proposed AxiomIR tree against the baseline structure:

$$\mathcal{P}_{\text{div}} = \min \left(1.0, \frac{|\text{size}_{\text{proposal}} - \text{size}_{\text{baseline}}|}{\text{size}_{\text{baseline}}} \times 2.0 \right) \quad (7)$$

Few-Shot Optimization We utilized the `dspy.BootstrapFewShot` optimizer with `max_bootstrapped_demos=3`. This allows the system to autonomously extract and prepend successful axiomatic modifications from the `experiment_history` as contextual exemplars for the Radical and Conservative agents in subsequent rounds.

B1. Customer Queue System

Background and Strategic Importance

Queueing systems serve as the foundational cornerstone of operations research and the control nexus for modern large-scale distributed architectures, high-frequency communication networks, and intelligent logistics systems. In these highly stochastic physical environments, the core scientific challenge lies in managing the delay explosion caused by non-stationary stochastic processes.

In the environment defined by the F1 simulator, the system must navigate a Pareto optimal solution between processing power (resource energy consumption) and quality of service (waiting latency). If the control axioms are too conservative, they lead to high hardware idle time and wasted energy; if too aggressive, they risk non-linear divergence of the queue length (Q_{len}) during sudden traffic spikes. The scientific value of AutoAxiom lies in its ability to discover evolved, symbolic control axioms with "adaptive resilience," providing the mathematical scaffolding for self-healing infrastructures.

Environmental Configuration and Execution Protocol

The F1 simulator is built upon the `simpy` discrete-event

880
881 **Table 4. AutoAxiom System Hyperparameters.** Parameters are extracted directly from the operational implementation used to generate
882 the results in Section 4.

Category	Parameter	Notation	Value
LLM Configuration	Underlying Model	-	gpt-4o
	Sampling Temperature	T_{llm}	0.9
	Max Tokens (Generation)	-	8,192
	Reasoning Framework	-	DSPY
Evolutionary Control	Total Rounds	T_{total}	15
	History Window	$ \mathcal{H} $	5
	Monte Carlo Runs	N_{mc}	100
	Simulation Base Seed	-	42
Annealing Schedule	Base Scaling Factor	Λ_0	100.0
	Violation Penalty Decay	T_{rise}	3.0
	Persistence Growth Lag	T_{stab}	10.0
Objective Weights	Performance Weight	w_{perf}	1.0
	Persistence Weight	w_{pers}	1.5
	Diversity Weight	w_{div}	1.0
	Compatibility Bonus	w_{comp}	1.0
Normalization	Safe Score Minimum	J_{min}	-1,500.0
	Safe Score Maximum	J_{max}	300.0

904 driving engine. To ensure absolute reproducibility and statistical rigor, all experimental groups (G1–G4) adhere to a “Zero-Blackbox” simulation protocol:

- **Multi-Seed Validation:** Each experimental group is subjected to 100 independent simulation runs (Seeds 42–141).
- **Stochastic Modeling:** Customer arrivals follow a Poisson process (λ_p), and service times follow an exponential distribution with a rate u determined in real-time by the active axiomatic logic.
- **Control Granularity:** The axiomatic logic performs global sampling and state decisions every $\Delta t = 0.5$ seconds.

921 The table below discloses the complete initial physical parameters configured in the simulation engine:

922 $\lambda_p: 0.5 \text{ s}^{-1}$

923 **Arrival Rate** — Poisson arrival rate with a mean of 0.5.

924 $\mu_p: 1.5 \text{ s}^{-1}$

925 **Base Service Rate** — Nominal system capacity (baseline rate starting point).

926 $\mu_{\max}: 5.0 \text{ s}^{-1}$

927 **Maximum Capacity** — Upper bound of the physical hardware processing rate.

928 $\mu_{\min}: 1.0 \text{ s}^{-1}$

929 **Minimum Operation** — Minimum rate required to maintain system activity.

930 $\rho_{\max}: 0.999$

931 **Saturation Threshold** — Critical utilization threshold for system instability.

932 $\Delta t: 0.5 \text{ s}$

933 **Control Step** — Step size for axiomatic adaptive adjustment and decision.

Metrics and Reward

934 The simulator tracks seven core physical metrics in real-time, forming the basis of the evolutionary fitness landscape. All metrics are reported as the mean and 95% Confidence Interval (CI) over 100 runs:

1. **Wait Time (\bar{W}_q):** Average duration customers wait in the buffer: $\frac{1}{N} \sum (t_{\text{start},i} - t_{\text{arrival},i})$.
2. **Occupancy (L_{avg}):** Average number of customers, verified via Little’s Law: $L = \lambda_p \cdot \bar{W}_q$.
3. **Utilization (ρ):** Load factor defined as $\rho = \lambda_p / u$.
4. **Resilience (Res):** Stability resilience index, calculated as $Res = 1.0 / (1.0 + 0.1 \cdot \rho)$.
5. **Final Reward (R_{final}):** The “North Star” metric for AutoAxiom iteration:

$$R_{\text{final}} = 0.7 \cdot P_s + 0.3 \cdot S_{\text{custom}}$$

935
936 Where S_{custom} is the self-defined logic score within the
937 axiom, weighting delay reduction (70%) and logical
938 rigor (30%).
939
940

941 6. **Physics Score (P_s):** Standardized physical performance score: $P_s = 100.0 / (1.0 + \bar{W}_q)$.
942
943 7. **Score (S):** Normalized against G1 (R_{base}) with $\sigma = |R_{\text{base}}|$.
944

945 Deconstruction of Experimental Regimes (G1–G3)

946 To contrast evolutionary advantages, we established three
947 highly persuasive benchmark groups:
948

- 949 950 951 • **G1: Baseline (Static Open-Loop):** $u = \mu_p$. Represents primitive control without feedback, offering zero defense against traffic pulses.
952
953 954 • **G2: SOTA-II (Linear Lyapunov Feedback):** $u = \text{Sat}(\mu_p + \beta \cdot Q_{\text{len}})$. Based on classical Lyapunov Stability Theory, it establishes linear feedback. While convergence is guaranteed, it suffers from significant response lag under non-stationary traffic.
955
956 957 • **G3: SOTA-I (Industrial FCFS Stability):** Utilizes a fixed high-efficiency rate fine-tuned by experts, coupled with strict FCFS hardware contention logic. It represents the physical performance ceiling for traditional non-adaptive strategies.
958
959 960 961 962 963

964 G4: The Evolved AutoAxiom Logic

965 AutoAxiom (G4) broke free from the constraints of linearity,
966 self-synthesizing a composite physical system with perception,
967 adaptive regulation, and defense layers.
968
969

970 Symbolic Physical Expression of G4:

$$971 u = \text{Sat}(\mu_p \cdot (P(\rho) + \beta Q_{\text{len}})) \cdot (1 + \gamma \cdot \mathbb{1}_{\{Q_{\text{len}} > \tau\}}) \quad (8)$$

972 The parameters determined through evolution are:
973
974

- 975 976 977 • **Non-linear Gain $P(\rho)$:** If $\rho < 0.4$, $P = 1.05$ (proactive pre-clearing); if $\rho > 0.6$, $P = 0.95$ (robustness smoothing).
978
979 980 • **Feedback Coefficient β :** The system identified an optimal fine-tuning coefficient of 0.02.
981
982 983 • **Gated Defense γ, τ :** Detected a critical threshold $\tau = 10$. When $Q_{\text{len}} > 10$, it triggers a pulse gain of $\gamma = 0.15$.
984
985 986

987 Analysis and Inference

988 The experimental results in the Queueing (F1) domain reveal that the evolved G4 axiom represents a sophisticated
989

Table 5. F1 Customer Queue: Performance Statistics (100 Runs)

Metric	Baseline	Lyapunov (G2)	FCFS-High (G3)	AutoAxiom (G4)
W_q (s)	1.98 ± 0.03	1.95 ± 0.02	0.99 ± 0.06	0.34 ± 0.05
L_{avg}	0.99 ± 0.02	0.98 ± 0.01	0.50 ± 0.03	0.17 ± 0.02
Physics Score	33.66 ± 0.34	33.92 ± 0.24	50.98 ± 1.25	76.53 ± 2.20
SRA Score	0.50 ± 0.01	0.51 ± 0.01	1.00 ± 0.04	1.74 ± 0.06

departure from traditional linear control paradigms. The mathematical core of the G4 logic,

$$u = \text{Sat}(\mu_p \cdot (P(\rho) + \beta Q_{\text{len}})) \cdot (1 + \gamma \cdot \mathbb{1}_{\{Q_{\text{len}} > \tau\}}) \quad (9)$$

functions as a multi-tiered defense strategy rather than a simple feedback loop. Unlike the Lyapunov-based SOTA (G2), which relies on a rigid linear feedback gain (Q_{len}/V) that often reacts too sluggishly to initial backlogs or over-compensates during transients, AutoAxiom discovered a **“state-aware modal switching” logic**.

By integrating a non-linear utilization sensor $P(\rho)$, the system proactively clears buffers when the load is low ($\rho < 0.4$), preventing the initial accumulation that typically leads to downstream congestion. More significantly, the autonomous discovery of the **“High-Water Mark”** at $\tau = 10$ allows the system to remain energy-efficient during normal operations while triggering a sharp 115% emergency boost precisely when the queue enters the critical exponential growth phase. This synergistic combination of proactive clearing and reactive pulsing results in an **82.8% reduction in average waiting time**. The fundamental inference is that in stochastic environments, a non-linear, threshold-aware defense mechanism is far more physically efficient and stable than any uniform proportional response.

Real-world Applicability

The G4 axiom possesses immense potential for direct deployment in high-stakes infrastructure, including **edge computing nodes, 5G base stations, and high-frequency trading gateways**. While most modern adaptive controllers rely on Deep Reinforcement Learning (DRL)—which functions as a “black box” and requires substantial computational overhead for real-time inference—the symbolic G4 axiom can be hard-coded directly into **ASIC or FPGA logic** as a set of lightweight, deterministic “if-then” instructions and simple arithmetic gates.

This implementation ensures nanosecond-level execution with near-zero computational cost and absolute auditability, fulfilling the stringent requirements of telecommunication standards and financial compliance. In a production data center, for instance, this axiom would allow a load balancer to manage unpredictable burst traffic with mathematical certainty, effectively preventing the **“tail latency”** spikes that degrade user experience. By bridging the gap between high-level heuristic optimization and hardened industrial

990 deployment, AutoAxiom provides a **”white-box” control**
 991 **law** that is as interpretable as it is high-performing, making
 992 it an ideal candidate for next-generation self-optimizing
 993 networks.

994

995

B2. Hospital Service Center (Triage System)

996

Background and Strategic Importance

998 Hospital triage systems represent complex stochastic environments characterized by heterogeneous priorities and
 999 preemptive resource competition. The primary operational
 1000 challenge lies in managing the conflict between **”Critical”** and
 1001 **”Minor”** patient flows. In high-pressure Emergency
 1002 Rooms (ER), critical patients are legally afforded absolute
 1003 preemption rights. However, if the axiomatic scheduling
 1004 logic is too rigid, it leads to a non-linear divergence in minor
 1005 queues (Queue Explosion), which not only deteriorates
 1006 the waiting environment but also induces latent medical
 1007 risks. The objective of AutoAxiom is to evolve a non-linear
 1008 control law capable of dynamically balancing the **”critical**
 1009 **lifeline”** with overall system throughput.

1010

Environmental Configuration

1012 The F2 simulator is built on the `simpy` discrete-event engine,
 1013 modeling an overloaded emergency department. To ensure full reproducibility, the physical boundary parameters
 1014 of the simulation engine are defined as follows:

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

- **Arrival Process:** Poisson-distributed arrivals with $\lambda_c = 1.0 \text{ s}^{-1}$ (Critical) and $\lambda_m = 1.7 \text{ s}^{-1}$ (Minor).
- **Service Dynamics:** $c = 2$ medical resources (servers) with a mean service efficiency of $\mu = 1.0 \text{ s}^{-1}$ per resource.
- **Preemption Logic:** Enabled (Critical patients can interrupt ongoing services for Minor patients).
- **Execution Protocol:** 100 independent trials (Seeds 42–141) with a physical duration of $T = 1000 \text{ s}$ per run to ensure steady-state evolution.
- **Critical Safety Threshold:** The target waiting time for critical cases is set at $\tau_{crit} = 30.0 \text{ s}$.

Metrics and The Multi-Objective Reward Function

The simulator captures the following core metrics to define the evolutionary fitness landscape:

1038

1039

1040

1041

1042

1043

1044

- **Wait Times (W_c, W_m):** The average queuing delays recorded for Critical and Minor patients, respectively.
- **Critical Coverage (C_{cov}):** The ratio of critical patients who successfully received service (mandatory safety constraint: $C_{cov} > 0.9$).

- **Critical Within Ratio (C_{win}):** The proportion of critical patients whose wait time was within the 30.0 s threshold.

- **Final Reward (R_{final}):** The core fitness function driving the evolution loop, calculated as:

$$R_{final} = 50.0 \cdot C_{win} + 10.0 \cdot C_{cov} - 1.0 \cdot W_c - 5.0 \cdot W_m$$

- **Physics Scores:** $100 \cdot C_{cov} / (1 + \bar{W}_{all})$ to reflect balance between Safety and Efficiency.

- **Score (S):** Given G1’s collapse ($R \approx -990$), we set $\sigma = 500$ (half the range of performance recovery). Note: A penalty weight for W_m (5.0) is five times higher than that for W_c to force the axioms to learn how to suppress minor queue divergence.

Experimental Regimes (G1–G3)

We evaluate three baseline regimes to define the boundaries of traditional scheduling:

- **G1: Baseline (Static Preemption):** Uses a static factor of 1.0. Due to absolute preemption, the minor queue collapses ($W_m > 200 \text{ s}$), resulting in a massive negative reward.
- **Sota1 (WSPT):** Industrial standard using Weighted Shortest Processing Time logic. It assigns a high penalty weight (5.0) to minor cases to compensate for their priority, representing the peak of static non-adaptive optimization.
- **Sota2 (Lyapunov Feedback):** Employs linear feedback where the priority factor scales as $1.0 + \beta Q_{len}$. While it compresses W_m , the linear growth lacks a “saturation guard,” often causing fluctuations in critical case certainty (W_c).

G4: The Evolved AutoAxiom Logic

AutoAxiom (G4) discovered a sophisticated non-linear regulation law that transcends traditional linear logic:

$$\text{Priority Factor} = 1.0 + 5.0 \cdot \tanh \left(\frac{W_m/100 + W_c/100}{2.0} \right) \quad (10)$$

The G4 regime utilizes a tanh **activation function** to achieve modal switching: the system remains stable during minor fluctuations but provides a non-linear, “gated” priority boost during critical accumulation. This prevents the minor queue from entering a divergent state while strictly adhering to the critical case safety redline.

Performance Statistical Records (100 Runs)

Table 6. F2 Triage System: Performance Statistics (100 Runs)				
Metric	Baseline	WSPT (Sota 1)	Lyapunov (Sota 2)	AutoAxiom (G4)
W_c (s)	1.00 ± 0.02	0.99 ± 0.02	5.71 ± 0.50	1.00 ± 0.02
W_m (s)	209.7 ± 4.9	2.77 ± 0.08	0.62 ± 0.02	2.61 ± 0.08
Crit Cov	$0.998 \pm .00$	$0.998 \pm .00$	$0.993 \pm .00$	$0.998 \pm .00$
Physics Score	0.75 ± 0.01	32.07 ± 0.29	28.35 ± 1.11	33.09 ± 0.34
SRA Score*	0.50 ± 0.00	1.00 ± 0.00	0.94 ± 0.02	1.02 ± 0.01

*Note: Standard SRA anchoring $G1=0.5$ and Best SOTA=1.0.

Inference and Conclusion

Analysis of the G4 regime reveals a 98.7% reduction in minor queue latency (W_m)². The discovered axiom demonstrates a "dynamic prioritization" property: by utilizing the tanh activation function, the system remains dormant during routine flows but provides a non-linear priority boost as W_m or W_c approaches critical thresholds³.

Analysis and Inference

Compared to the academic authority Lyapunov (G3), G4 achieved a superior reward profile (59.98 ± 0.00)⁴. Derivation from the physical expression reveals: G3 relies on "passive response," where priority scales linearly with queue length; whereas G4 possesses "anticipatory balancing" capabilities, utilizing the bounded nature of the tanh operator to prevent priority saturation⁵.

Real-world Applicability

The symbolic nature of the G4 axiom allows it to be directly compiled into ultra-lightweight logical instructions and deployed on ASIC chips for high-performance switches or data center gateways. This logic, combining "crisis warning" with "adaptive regulation," is the core scientific path toward building future zero-cost inference and ultra-low latency intelligent networks.

B3. Software Development Process Optimization (Softwareopt)

Background and Strategic Importance

Modern software development is a complex adaptive system where the primary scientific challenge lies in managing the non-linear interplay between **Feature Velocity** and **Systemic Entropy**. The F5 simulator environment models a high-fidelity software lifecycle where developers must allocate a finite pool of effort (η) across multiple concurrent modules. The core objective is to maximize the project's effective productivity while preventing the accumulation of "Technical Debt" (manifested as SD-Complexity) and severe regressions (Error Rate). If effort allocation is too conservative, development stalls; if too aggressive, the "Broken Window Effect" triggers exponential error growth. AutoAxiom is tasked with discovering a governance axiom that transcends reactive heuristics by sensing developmental "friction" and non-linearly modulating the intensity of resource application.

Environmental Configuration

The F5 environment is a multi-agent, stochastic simulation of a software ecosystem with the following boundary parameters:

- **Project Scale:** 10 parallel development modules with non-uniform, stochastic task arrival rates.
- **Systemic Decay:** A baseline complexity drift simulates code rot due to shifting requirements and library dependencies.
- **Simulation Protocol:** 100 simulation cycles per trial, executed over 100 independent trials (Seeds 42–141) to ensure statistical convergence.
- **Dynamic Constraints:** A fundamental trade-off exists where increased Progress Rate (Φ) induces a non-linear penalty on SD-Complexity (σ_c) and Error Rate (ER).
- **Initialization:** Module readability and consistency are initialized within the [0.7, 0.8] range to simulate a healthy starting state.

Metrics and The Software Governance Reward Function

Performance is quantified via a multi-objective fitness function that rewards sustainable growth:

1. **Avg_ProgressRate (Φ):** The mean percentage of feature completion per unit time.
2. **Avg_SD_Complexity (σ_c):** The standard deviation of complexity across modules, representing the "entropy" and lack of balance in development.
3. **Avg_ErrorRate (ER):** The frequency of defect introduction during the execution phase.
4. **Avg_W_H:** The mean holding cost/waiting time for feature delivery, representing systemic latency.
5. **Physics Score (P_s):** The effective high-quality yield: $P_s = 100 \cdot \Phi \cdot (1 - ER) \cdot (1 - \sigma_c)$.
6. **Final Reward:** $R_{soft} = w_1 \cdot \Phi - w_2 \cdot \sigma_c - w_3 \cdot ER + w_4 \cdot CQ$, designed to penalize "unhealthy" speed.
7. **SRA Score (S):** Normalized against the G_1 baseline (0.5) and SOTA* (1.0).

Experimental Regimes (G1–G3)

- **G1: Baseline (Static Resource Allocation):** Employs a fixed effort coefficient $\eta = 0.1$. This "open-loop" approach is oblivious to the project state. While it

maintains a low Error Rate, it results in a stagnant Progress Rate (0.1002 ± 0.0008), leading to high systemic latency and an inability to handle demand spikes.

- **SOTA1: Velocity-Focused Heuristic (G2):** A high-intensity growth model focusing purely on throughput: $\eta = \eta_{base} \cdot (1 + k \cdot \Phi)$. While achieving the highest raw Progress Rate (0.9443 ± 0.0004), it triggers the "Technical Debt Trap," resulting in a massive spike in SD-Complexity (0.2669 ± 0.0103) and an unsustainable Error Rate (0.1639 ± 0.0008).
- **SOTA2: Balanced Agile Framework (G3):** A linear feedback model: $\eta = \eta_{base} \cdot (1 + \gamma_1 \Phi - \gamma_2 \sigma_c)$. This proactive strategy attempts to "brake" when complexity rises. It achieves a superior Reward (4.2314 ± 0.0075) compared to G1, but its linear nature makes it sluggish during non-linear complexity explosions.

G4: The Evolved AutoAxiom Logic (Non-linear Friction-Aware Law)

In Round 11, AutoAxiom discovered a sophisticated **non-linear friction-sensing governance law** that identifies the optimal "tipping point" between productivity and debt:

$$\eta_{adj} = \eta_{base} \cdot [\Psi \cdot \log(1 + \Phi) \cdot \text{sigmoid}(CQ - \beta\sigma_c)] \quad (11)$$

Where Ψ represents a global momentum factor and CQ is code quality.

Physical Inference: G4 evolved a **Dynamic Entropy Gate**. The term $\log(1 + \Phi)$ accounts for the Law of Diminishing Returns in development effort. Crucially, the $\text{sigmoid}(CQ - \beta\sigma_c)$ operator acts as a non-linear "Circuit Breaker." When the system entropy (σ_c) outweighs the quality-to-debt ratio, the sigmoid term collapses toward zero, forcing an immediate transition into a "Refactoring Phase." This prevents the "Broken Window" effect by proactively dampening aggressive development before technical debt reaches a point of structural collapse.

Performance Statistical Records (100 Runs)

Analysis and Inference: Optimal Control of Technical Debt

G4, through its sigmoid damping, maintains the lowest complexity dispersion ($\sigma_c : 0.1742$). This proves that **non-linear "refactoring gates"** are more effective at maintaining long-term project health than linear compensation models (G3), representing a 10.5% improvement in systemic entropy over the Agile-Linear baseline⁷.

Real-world Applicability: The discovered G4 axiom is directly applicable to **Autonomous Project Governance** and **AIOps Orchestration**. By implementing this logic into DevOps control planes, organizations can automatically adjust team "WIP limits" or deployment gates based on real-time

metrics of code complexity and quality. Its logarithmic-sigmoid nature allows for a "smooth-yet-decisive" resource reallocation, ensuring that technical debt is serviced proactively without the oscillating "firefighting" behavior seen in traditional management.

B4. Physical Control (Numerical Heat Conduction)

Background and Strategic Importance

Physical control systems, particularly in the context of numerical simulations, require a delicate balance between **computational stability** and **physical fidelity**. The F4 simulator models a 1-D non-stationary heat conduction process governed by the diffusion equation. The core scientific challenge is the dynamic selection of the diffusion coefficient (α): it must satisfy the Courant-Friedrichs-Lowy (CFL) stability condition to prevent numerical divergence while minimizing the L_2 error relative to the physical ground truth. AutoAxiom's goal is to evolve an adaptive control law capable of sensing numerical instability "precursors" and adjusting physical parameters to achieve Pareto optimality between accuracy and stability. **Environmental Configuration**

The F4 environment is a discretized physical grid where a high-intensity thermal pulse ($u = 500$) is introduced. The simulation parameters are configured as follows:

- **Grid Dynamics:** 50 nodes with a spatial step of $\Delta x = 0.1$.
- **Simulation Scope:** 100 time steps per trial, executed over 100 independent trials (Seeds 42–141).
- **Base Physics:** Nominal diffusion coefficient $\alpha_{base} = 0.01$.
- **Numerical Constraint:** The system monitors the CFL number; if $\alpha \cdot \Delta t / \Delta x^2$ exceeds 0.5, a complete stability penalty is applied.

Metrics and The Physical Reward Function

Performance is evaluated across five physical dimensions to determine evolutionary fitness:

1. **L_2 Error (E_{L2}):** The root-mean-square deviation from the ideal physical state.
2. **Total Variation (TV):** Measures numerical oscillations; higher values indicate non-physical instability.
3. **Max Gradient (∇_{max}):** The peak temperature slope, indicating localized stress on the numerical scheme.
4. **Physics Score (P_s):** The physical fidelity index: $P_s = 100 / (1 + E_{L2} + 0.1 \cdot TV)$.

Table 7. F3 Software Optimization: Performance Statistics (100 Runs)

Metric	Baseline	Heuristic (G2)	Agile-Linear (G3)	AutoAxiom (G4)
Avg Progress Rate	0.10 ± 0.00	0.94 ± 0.00	0.89 ± 0.00	0.90 ± 0.00
Avg Error Rate	0.10 ± 0.00	0.16 ± 0.00	0.09 ± 0.00	0.09 ± 0.00
SD Complexity	0.21 ± 0.01	0.27 ± 0.01	0.19 ± 0.01	0.17 ± 0.01
Avg W_H	5.55 ± 0.01	6.74 ± 0.02	5.38 ± 0.01	5.55 ± 0.01
Physics Score	7.16 ± 0.13	57.88 ± 0.55	65.02 ± 0.83	67.46 ± 0.84
SRA Score	0.50 ± 0.00	0.94 ± 0.00	1.00 ± 0.01	1.02 ± 0.01

5. **Final Reward:** $R_{phys} = -(E_{L2} + 0.1 \cdot TV + Penalty) \times 10^{-1}$, enforcing stability-first control.

6. **SRA Score (S):** Normalized against the G_1 baseline (0.5) and *SOTA** (1.0).

Experimental Regimes (G1–G3)

- **G1: Baseline (Static Fourier’s Law):** Uses a fixed $\alpha = 0.01$. This regime fails to adapt to the high-gradient thermal pulse, leading to significant L_2 errors (151.31 ± 1.08) and high TV due to unmanaged oscillations.
- **SOTA1: Industrial PD Control (Conservative):** A robust engineering standard utilizing a proportional-derivative law with a strict safety clamp: $\alpha = \min(0.05, \alpha_{base} + K_p \bar{u} + K_d \nabla_{max})$. While stable, the 10% safety margin (clamping at $\alpha = 0.05$) limits its cooling throughput.
- **SOTA2: Classical Physical Linear Model:** A first-order adaptive feedback law: $\alpha = \alpha_{base} \cdot (1 + 0.01 \cdot u_{mean})$. By sensing the mean energy level, its accuracy improves but remains vulnerable to localized gradient spikes.

G4: The Evolved AutoAxiom Logic (Non-linear Saturation Law)

AutoAxiom (G4) discovered a sophisticated non-linear coupling logic in Round 15 that utilizes a saturation-based mechanism to safely approach the physical limit:

$$\alpha_{adj} = \alpha_{base} \cdot [E_{pot} \cdot \tanh(\beta_1 \bar{u} + \beta_2 \nabla_{max})] \quad (12)$$

Where the evolved coefficients leverage the system’s potential energy (E_{pot}) to drive diffusion while maintaining stability via the hyperbolic tangent operator.

Analysis and Inference: The Physics of Evolved Stability
The G4 regime achieves a 76.4% reduction in L_2 Error compared to the industrial SOTA1. The fundamental

Table 8. F4 Heat Conduction Control: Performance Statistics (100 Runs)

Metric	Baseline	PD-Control (G2)	Linear-Adapt (G3)	AutoAxiom (G4)
L_2 Error	151.3 ± 1.1	44.97 ± 1.5	108.3 ± 1.5	10.60 ± 0.83
CFL ($\times 10^{-2}$)	0.51 ± 0.00	2.56 ± 0.06	0.93 ± 0.02	5.09 ± 0.13
TV	536.3 ± 5.5	142.3 ± 4.7	351.8 ± 5.6	33.51 ± 2.61
Max Grad	1475 ± 13	510.9 ± 11	1192 ± 6.4	120.9 ± 8.1
Physics Score	0.49 ± 0.00	1.66 ± 0.05	0.69 ± 0.01	6.69 ± 0.34
SRA Score	0.50 ± 0.00	1.00 ± 0.02	0.59 ± 0.00	3.14 ± 0.15

inference is that G4 has successfully closed the gap between conservative engineering and the theoretical physical limit. By maintaining a mean CFL of ≈ 0.051 (nearly double that of SOTA1), G4 demonstrates the ability to operate safely within the high-performance regime that traditional controllers discard as “risky.” The significantly lower TV (33.51 ± 2.61 vs 142.29 ± 4.73) proves that G4’s soft-saturation strategy suppresses the numerical chattering common in linear-plus-clamp systems.

Real-world Applicability: G4’s discovered axiom is highly applicable to **smart thermal materials** and **HPC physical solvers**. Its symbolic, non-linear form can be directly implemented as a constitutive law in phase-change heat sinks or adaptive CFD meshes. Unlike black-box neural solvers, its mathematical structure provides an explicit guarantee of boundedness via the tanh operator, making it suitable for safety-critical thermal management in aerospace and semiconductor cooling.

B5. Resource Allocation (Dynamic Computing Nodes)

Background and Strategic Importance

Resource allocation systems represent a fundamental optimization challenge in distributed computing and cloud infrastructure. The core scientific conflict lies in the trilemma between **Throughput** (efficiency), **Makespan** (completion time), and **Fairness** (load balancing). In a multi-tenant cloud node with finite capacity, static or purely greedy allocation logic either starves heavy tasks or underutilizes hardware during demand volatility. AutoAxiom’s objective

1210 is to discover a non-linear allocation axiom that dynamically
 1211 adjusts resource quotas based on system stress and
 1212 cost boundaries to maximize global utility.

1213 Environmental Configuration

1214 The F5 simulator models a high-concurrency task processing
 1215 node with the following physical parameters:

- 1218 • **Task Load:** 20 heterogeneous tasks with varying work-
 1219 loads (W_{task}) arriving in a burst mode.
- 1220 • **Resource Capacity:** Total physical capacity $R_{max} =$
 1221 100.0 units.
- 1222 • **Cost Factor:** Operational cost penalized by a factor
 1223 $\eta_{cost} = 0.1$.
- 1224 • **Execution Protocol:** 100 independent trials (Seeds
 1225 42–141) to ensure statistical significance and capture
 1226 stochastic performance.
- 1227 • **Allocation Constraint:** A hard hardware limit of
 1228 $\sum alloc_i \leq R_{max}$ is enforced.

1229 Metrics and The Multi-Objective Reward Function

1230 The performance is evaluated across six core dimensions to
 1231 determine evolutionary fitness:

- 1232 • **Throughput (Φ):** Total tasks completed per unit time.
- 1233 • **Makespan (M):** Total time taken until the final task is
 1234 completed.
- 1235 • **Load Balance Std (LB):** Standard deviation of com-
 1236 pletion times, reflecting system fairness.
- 1237 • **Physics Score (P_s):** The task execution efficiency:
 1238 $P_s = 100 \cdot \Phi / (M \cdot (1 + LB))$.
- 1239 • **Final Reward:** $R_{alloc} = (5.0 \cdot \Phi - 0.5 \cdot M - 10.0 \cdot$
 1240 $LB - 0.1 \cdot Cost) \times 10^{-2}$.
- 1241 • **SRA Score (S):** Normalized against the G_1 baseline
 1242 (0.5) and $SOTA^*$ (1.0).

1243 Experimental Regimes (G1–G3)

- 1244 • **G1: Baseline (Static Proportional):** Allocates re-
 1245 sources strictly proportional to task utility without sens-
 1246 ing load. This leads to the lowest throughput (10.95)
 1247 and the longest makespan (4.75s).
- 1248 • **Sota1: JSQ (Join-the-Shortest-Queue):** Focuses on
 1249 absolute fairness ($LB = 0.00$). While it eliminates
 1250 variance, it severely limits total system throughput
 1251 compared to adaptive methods.

- 1252 • **Sota2: Min-Min Scheduling:** A greedy strategy pri-
 1253 oritizing small tasks. It improves throughput over G_1
 1254 but results in high load imbalance (0.85) and delayed
 1255 completion for heavy tasks.

1256 G4: The Evolved AutoAxiom Logic (Boundary-Aware 1257 Scaling)

1258 AutoAxiom (G_4) discovered a multi-stage non-linear scal-
 1259 ing axiom that utilizes \tanh and \exp operators to sense
 1260 operational cost boundaries:

$$AF = \begin{cases} 4 \cdot e^{\tanh(P/50)} & \text{if } Cost < 15 \\ 3 \cdot e^{\tanh(LB/0.1)} & \text{if } 15 \leq Cost < 40 \\ \text{mean}(\Phi, M/10)/1.3 & \text{if } Cost \geq 55 \end{cases} \quad (13)$$

1261 **Inference:** G_4 identifies the "Diminishing Returns" zone.
 1262 It employs aggressive scaling in low-cost states to boost
 1263 throughput and switches to stability-focused regulation in
 1264 high-cost states to prevent system-wide congestion.

1265 Performance Statistical Records (100 Runs)

1266 *Table 9. F5 Resource Allocation: Performance Statistics (100
 1267 Runs)*

Metric	Baseline	JSQ-Fair (G_2)	Min-Min (G_3)	AutoAxiom (G_4)
Makespan (s)	4.75 ± 0.14	1.09 ± 0.02	2.87 ± 0.04	1.19 ± 0.04
Throughput	10.95 ± 0.26	18.52 ± 0.35	15.18 ± 0.25	43.79 ± 1.02
Load.Bal.Std	1.47 ± 0.06	0.00 ± 0.00	0.85 ± 0.02	0.37 ± 0.01
Cost.Penalty	0.05 ± 0.00	0.05 ± 0.00	0.05 ± 0.00	0.05 ± 0.00
Physics Score	93.38 ± 3.13	1700.3 ± 35.9	286.1 ± 5.3	2698.6 ± 121.5
SRA Score	0.50 ± 0.00	1.00 ± 0.01	0.56 ± 0.00	1.31 ± 0.04

1268 Analysis and Inference: The Physics of Evolved Alloca- 1269 tion

1270 The G_4 regime achieves a **133% improvement in Final
 1271 Reward** over the best performing SOTA (Sota1). The funda-
 1272 mental inference is that optimal scheduling is not a binary
 1273 choice between fairness and throughput, but a dynamic
 1274 negotiation within the system's non-linear "Cost-Utility" en-
 1275 velope. By allowing a marginal increase in imbalance (0.37)
 1276 compared to the rigid Sota1, G_4 unlocks massive gains in
 1277 throughput (43.79), effectively capturing the Pareto front of
 1278 resource management.

1279 **Real-world Applicability:** The symbolic
 1280 G_4 axiom is ready for implementation in
 1281 Kubernetes Horizontal Pod AutoScalers (HPA) and
 1282 Edge Schedulers. Its "white-box" nature allows engineers
 1283 to verify safety constraints while benefiting from zero-
 1284 latency adaptive logic that is significantly more performant
 1285 than standard heuristics like Round-Robin or Max-Min
 1286 Fairness.

1287 Robustness and Generalization Analysis

1288 To verify that the evolved G_4 axiom represents a generalized
 1289 physical control law rather than a numerical over-fitting to

specific parameters(15/40/55), we conducted a series of multi-scenario stress tests. We utilize a **Scenario-Adaptive SRA** protocol where the Baseline (G_1) is anchored at 0.50 and the best-performing SOTA in each specific environment is anchored at 1.00 to serve as the local efficiency frontier. This relative normalization ensures that the score reflects the expansion of the Pareto front within each unique physical regime.

Table 10. Robustness Performance (SRA Score S). G_1 : Baseline, G_2 : JSQ, G_3 : Min-Min, G_4 : Ours (AutoAxiom). All scores represent the normalized physical utility index P_s with 95% confidence intervals.

Scenario	G_1 (Base)	G_2 (SOTA-1)	G_3 (SOTA-2)	G_4 (Ours)
S1: Standard	$0.500 \pm .002$	$1.000 \pm .021$	$0.558 \pm .003$	$1.892 \pm .076$
S2: Scarcity	$0.500 \pm .001$	$1.000 \pm .020$	$0.529 \pm .002$	$1.401 \pm .058$
S3: Load Stress	$0.500 \pm .002$	$1.000 \pm .011$	$0.536 \pm .002$	$3.846 \pm .084$
S4: Imbalance	$0.500 \pm .001$	$1.000 \pm .024$	$0.516 \pm .001$	$0.764 \pm .036$
S5: Scale Stress	$0.500 \pm .004$	$1.000 \pm .023$	$0.596 \pm .004$	$2.368 \pm .089$

Stressor Params: $S_1(R100, W[1, 10])$, $S_2(R30)$, $S_3(W[20, 50])$, $S_4(W[1, 50])$, $S_5(R2000)$.

Physical Interpretations of Stress Scenarios (S_1 – S_5)

The robustness evaluation is anchored in five distinct physical regimes:

- **Standard Operations (S_1):** Models a routine cloud node state with balanced resource redundancy ($R_{max} = 100$), establishing the baseline efficiency frontier.
- **Extreme Capacity Scarcity (S_2):** Simulates a 70% infrastructure capacity loss ($R = 30$). This scenario tests the "Safety Margin" of the G_4 axiom and its ability to maintain high relative efficiency through autonomous resource contraction.
- **High Load Stress (S_3):** Mimics a heavy task burst environment ($W \in [20, 50]$). This evaluates the axiom's "Processing Bandwidth" and whether its non-linear scaling can prevent completion time divergence under massive workloads.
- **High Imbalance Stress (S_4):** Reflects extreme task heterogeneity ($W \in [1, 50]$). This regime tests the system's "Fairness Resilience," evaluating if the allocation logic can handle a 50-fold variance in task scales.
- **Large Scale/Costly (S_5):** Simulates a massive-scale infrastructure ($R = 2000$). This scenario triggers the high-cost axiomatic gating logic, verifying the effectiveness of the discovered phase-transition boundaries (15/40/55) for large-system stability.

Key Insights and Inferences

The experimental results demonstrate that G_4 captures the non-linear "Cost-Utility" envelope with high fidelity across

diverse stress regimes. In S_3 (**Load Stress**), G_4 achieves a clear SRA score of **3.846**, indicating that the evolved non-linear scaling is significantly more effective than traditional JSQ in handling heavy-duty task bursts. This confirms that the discovered symbolic structure is not mere parameter fitting but a robust control law for high-load regimes.

In S_4 (**Imbalance**), we observe a fundamental trade-off where G_4 yields the frontier to G_2 ($S = 0.764$), as the axiom prioritizes global throughput over extreme fairness in highly skewed distributions. However, the consistent dominance of G_4 in S_1 , S_2 , S_3 , and S_5 proves that its discovered logic (e.g., the \tanh -gated scaling) acts as a robust physical law. By autonomously switching between aggressive exploitation and protective regulation, AutoAxiom achieves a Pareto-optimal resilience that remains structurally absent in static or purely greedy scheduling logics.

B6. Service Composition (Cyber-Physical Co-Simulation)

Background and Cyber-Physical Context

The F6 domain represents the most complex environment in the current benchmark, transitioning from single-node optimization to a **Closed-Loop Cyber-Physical Feedback System**. This domain models the intricate synchronization between a discrete-event computing queue (the Cyber domain) and a stochastic thermodynamic core (the Physical domain). The "composition" challenge here is to dynamically orchestrate the service frequency (μ) in response to thermal fluctuations (T_{core}) to prevent hardware overheating while maintaining task throughput. Unlike traditional service selection, this requires balancing the **non-linear thermal inertia** of physical hardware with the **bursty stochasticity** of Poisson task arrivals.

Environmental Configuration

The co-simulation environment is governed by a set of coupled stochastic differential equations and discrete events:

- **Queue Subsystem:** Modeled with an arrival rate $\lambda_{in} = 8.0$ and a base service rate $\mu_{base} = 10.0$.
- **Thermal Subsystem:** Governed by cooling coefficients (0.15) and heat generation rates (0.8), with a safety threshold $T_{max} = 85.0^{\circ}\text{C}$.
- **Simulation Scope:** 100 independent trials (Seeds 42–141) with a duration of $T = 1000$ to capture long-term stability and synchronization drift.

Metrics and The Synchronization Reward Function

The performance of the composition axioms is quantified by their ability to maintain inter-domain equilibrium:

- **SyncError (E_{sync}):** The product of the standard devia-

tions of T_{core} and Q_{len} , representing the magnitude of chaotic oscillations between the computing and physical domains.

- **Contract Satisfaction** (C_{sat}): The ratio of total simulation time where the core temperature remains within safe operational bounds ($T_{core} \leq T_{target}$).
- **Physics Score** (P_s): The system stability index: $P_s = 100/(1 + E_{sync} + Lat)$.
- **Final Reward**: $R_{comp} = (100 \cdot C_{sat} - 2 \cdot Lat - 10 \cdot E_{sync}) \times 10^{-1}$.
- **SRA Score** (S): Normalized against the G_1 baseline (0.5) and *SOTA** (1.0).

Experimental Regimes (G1–G3)

- **G1: Baseline (Static Coupling)**: Uses a fixed linear mapping ($T_{Input} \propto Q_{len}$) without active frequency scaling. Under high loads, this leads to thermal runaway or queue explosion.
- **Sota1: PID Feedback Control**: An industrial standard employing Proportional-Integral-Derivative logic ($K_p = 0.8, K_i = 0.05, K_d = 0.1$) to adjust μ based on thermal error.
- **Sota2: Linear State Feedback**: A proactive law utilizing a weighted sum of T_{core} and Q_{len} to regulate the system, representing classical control theory.

G4: The Evolved AutoAxiom Logic (Nonlinear State Coupling)

AutoAxiom (G4) discovered a sophisticated non-linear coupling law that replaces traditional historical-error tracking with instantaneous state-dependent scaling. The evolved physical expression for the service rate μ is:

$$\mu = \max \left(0.1, 10.0 + \left[0.5 + 0.1 \cdot e^{-(Q_{len} - 5.0)} \right] \cdot \tanh(T_{core}) \right) \quad (14)$$

Physical Analysis:

- **Thermal Saturation**: The use of the \tanh operator allows the system to sense the temperature gradient relative to the ambient environment. As T_{core} rises, the service rate is non-linearly throttled to prevent thermal saturation.
- **Load-Aware Exponential Damping**: The term $e^{-(Q_{len} - 5.0)}$ acts as a "load sensor." When the queue length is small, the system maintains high frequency for performance; as Q_{len} exceeds the threshold, the service rate is exponentially damped to reduce heat generation, effectively preventing thermal runaway before the safety contract is violated.

Performance Statistical Records (100 Runs, Round 4)

Table 11. F6 Cyber-Physical Composition: Performance Statistics (100 Runs)

Metric	Baseline	PID-Control (G2)	Linear-State (G3)	AutoAxiom (G4)
SyncError	33.27 ± 1.56	0.26 ± 0.02	5.06 ± 0.10	0.29 ± 0.00
Latency (s)	0.023 ± 0.00	0.000 ± 0.00	0.002 ± 0.00	0.27 ± 0.00
C_{sat} (Ratio)	1.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.00
Physics Score	2.92 ± 0.11	79.19 ± 0.83	16.50 ± 0.23	63.84 ± 0.56
SRA Score	0.50 ± 0.00	1.00 ± 0.01	0.59 ± 0.00	0.90 ± 0.00

Analysis and Inference: Efficiency of Evolved Symbolic Control

In this high-fidelity co-simulation, the industrial **PID controller (Sota1)** maintains its status as the performance benchmark, particularly in its ability to force the system into a near-zero queue state with minimal latency. However, the evolved **AutoAxiom (G4)** exhibits advantages in its mathematical formulation:

- **Stability Parity**: G4 achieves a synchronization error (0.29) that is functionally equivalent to the fine-tuned PID (0.26), demonstrating that an evolved symbolic law can reach industrial-grade stability.
- **Stateless Execution**: Unlike PID, which requires historical error integration (K_i) and differentiation (K_d), G4 is a **memory-less symbolic function**. This makes it far more resilient to historical noise propagation and simpler to implement in hardware-level logic (ASIC/FPGA).
- **Energy-Aware Damping**: G4 evolved a "Conservative Thermal Buffer," allowing a moderate queue length (2.22) to naturally dampen thermal intensity, whereas PID consumes excessive control effort to clear even minor stochastic bursts.

In Summary, AutoAxiom achieves SRA = 0.90, competitive with but not exceeding the strongest PID baseline (SRA = 1.00) under the SRA normalization protocol. The Physics Score (63.84) reflects a performance trade-off inherent in abandoning historical error integration. However, the symbolic axiom offers distinct operational characteristics that prioritize interpretability and stateless execution over raw synchronization performance.

Real-world Applicability: While PID remains ideal for high-precision local loops, the G4 axiom offers a **"White-Box" alternative** for large-scale distributed compositions where tracking error history for thousands of sub-services is computationally prohibitive. G4 provides an interpretable, zero-latency synchronization law optimized for Real-time SoC Power Management and Green Data Center Orchestration.

1375 B7. Soft Robotic Locomotion

1376 Background and Voxel-Based Physics Context

1377 The EvoGym domain models a soft robotic system composed of discrete voxel elements, where locomotion is
 1378 achieved not through rigid joints, but via the volumetric
 1379 expansion and contraction of actuated voxels. The robot, a
 1380 1×5 soft lattice, operates in a physics engine that simulates
 1381 continuous deformation, surface friction, and fluid drag. The
 1382 core control challenge lies in synthesizing a distributed ac-
 1383 tuation signal $u(t, x)$ for each voxel to generate coordinated
 1384 peristaltic gait. The control law must be **terrain-adaptive**,
 1385 modulating its frequency (ω) and amplitude (A) to traverse
 1386 heterogeneous environments without proprioceptive sensors
 1387 (e.g., cameras), relying solely on local state variables like
 1388 velocity (v), contact forces (F_c), and structural strain.
 1389

1391 Environmental Configuration and Terrain Segmentation

1392 To rigorously evaluate adaptability, the simulation environ-
 1393 ment is segmented into three distinct 10m zones, each im-
 1394 posing unique physical constraints:
 1395

- 1397 • **Zone I: Flat Ground (0–10m):** Characterized by stan-
 1398 dard kinetic friction ($\mu_k = 1.0$) and a nominal damping
 1399 coefficient ($d = 0.1$). This zone serves as the control
 1400 group to evaluate the baseline metabolic efficiency and
 1401 steady-state velocity of the robotic gait.
- 1402 • **Zone II: Ice Surface (10–20m):** This zone introduces
 1403 a low-friction singularity ($\mu_k \approx 0.1$, $d = 0.1$). The
 1404 primary challenge is **traction loss**. Under traditional
 1405 open-loop control, aggressive actuation leads to "voxel-
 1406 slip" (wheel-spin), where energy is rapidly dissipated
 1407 into the environment without generating forward mo-
 1408 mentum, often leading to total kinetic stall.
- 1409 • **Zone III: Mud Pit (20–30m):** Characterized by
 1410 high viscosity and a significant damping coefficient
 1411 ($d = 2.0$). It introduces a non-linear drag force
 1412 $F_{drag} \propto -v^2$. The scientific challenge here is **power**
 1413 **delivery**; conservative strategies that work on ice fail
 1414 to overcome the yield stress of the mud, causing the
 1415 robot to sink or stall.

1416 **Simulation Scope:** 100 independent trials (Seeds 42–141)
 1417 are executed per Round, with stochastic perturbations in
 1418 initial robot posture and terrain roughness ($\pm 10\%$) to ensure
 1419 robust evolutionary discovery.

1423 Metrics and Physical Reward Function

1424 Performance is quantified using a composite physics-
 1425 informed reward function:
 1426

- 1427 • **Traversal Time (T_{zone}):** The time required to clear
 1428 each 10m segment.

- 1429 • **Energy Cost (E_{total}):** The integral of actuator work

$$W = \int |u(t) - 1.0| dt.$$
- 1430 • **Slip Penalty (S_{slip}):** Cumulative time where voxel
 1431 velocity exceeds centroid velocity (wasted motion).
- 1432 • **Score:** Normalized Pareto score against the PPO base-
 1433 line ($R \approx 500$).

1435 Baseline Definition (Round 0)

1436 The evolutionary starting point (G1) is a naive **Open-Loop**
 1437 **Traveling Wave**, representing the standard "Sine-Gait" used
 1438 in soft robotics literature. It lacks any sensor feedback
 1439 mechanisms.

$$u(t, x) = 1.0 + u_{base} \cdot \sin(\omega t - \kappa x) \quad (15)$$

1440 Where $u_{base} = 0.8$ determines the expansion amplitude,
 1441 $\omega = 4.0$ is the temporal frequency, and $\kappa = 2.0$ is the
 1442 spatial wave number governing the gait's wavelength. While
 1443 effective on flat ground (12.05s), it fails on Ice (39.92s) due
 1444 to its inability to sense or react to traction loss.

1446 B7.1. Evolutionary Performance Matrix

1447 Table 12 presents the full statistical breakdown of the evolu-
 1448 tionary trajectory. Note the non-monotonic progress, illus-
 1449 trating the system's navigation through local optima (R1)
 1450 and infeasible solutions (R3).

1452 B7.2. Axiomatic Forensics and Round Analysis

1454 Round 1: The Conservative Trap (Anti-Slip Negative 1455 Feedback)

1456 Evolved Axiom:

$$u(t) = 1.0 + \text{clamp}(u_{base} - 0.5 \cdot \text{slip}, 0.1, 1.0) \cdot \tanh(\sin(\omega t - \kappa x)) \quad (16)$$

1457 **Detailed Analysis:** The system's first innovation was the in-
 1458 troduction of a negative feedback loop: $u_{amp} \propto -0.5 \cdot \text{slip}$.
 1459 Physically, this mimics a traction control system (TCS) in
 1460 automobiles. On **Ice**, this logic successfully detected wheel-
 1461 spin and throttled the actuation amplitude, improving traversal
 1462 time from 39.9s to 29.2s. However, this created a fatal
 1463 flaw in the **Mud** zone. The high viscous drag of the mud
 1464 prevents rapid forward motion, which the simplistic 'slip'
 1465 sensor misinterpreted as a loss of traction. Consequently,
 1466 as the robot encountered resistance in the mud, the axiom
 1467 aggressively reduced power (to the lower clamp limit of
 1468 0.1), effectively causing the robot to "choke" itself. This
 1469 illustrates a classic local optimum where optimizing for sta-
 1470 bility (Ice) compromises power delivery (Mud), leading to
 1471 a regression in Zone 3 (47.67s).

1473 Round 3: Numerical Hallucination (Physics Engine Ex- 1474 ploit)

Table 12. The Phylogeny of Control in EvoGym. Data reported as Mean \pm 95% CI.

Metric	Baseline (R0)	Round 1	Round 3	Round 6	Round 8	Round 9 (Ours)	PPO (RL)
Zone 1: Flat Ground							
Time (s)	12.05 \pm 0.81	3.08 \pm 0.44	0.86 \pm 0.00	80.00 \pm 0.00	5.10 \pm 0.90	4.15 \pm 0.16	2.20 \pm 0.00
Energy (J)	3950 \pm 222	837 \pm 116	297 \pm 0	2538 \pm 1	1147 \pm 193	738 \pm 27	219 \pm 0.03
Zone 2: Ice (Low Friction)							
Time (s)	39.92 \pm 1.14	29.25 \pm 2.06	0.22 \pm 0.00	–	52.12 \pm 1.28	0.67 \pm 0.05	1.10 \pm 0.00
Energy (J)	11952 \pm 308	7416 \pm 515	57 \pm 0	–	10906 \pm 271	131 \pm 9	108 \pm 0.01
Zone 3: Mud (High Drag)							
Time (s)	28.03 \pm 0.76	47.67 \pm 2.26	1.20 \pm 0.01	–	22.79 \pm 1.03	1.53 \pm 0.10	1.19 \pm 0.01
Energy (J)	8538 \pm 226	12053 \pm 571	386 \pm 1	–	4802 \pm 215	342 \pm 21	119 \pm 0.53
Status	Open-Loop	Conservative	Hallucinated	Crash	Oscillatory	Optimal	Black-Box

Evolved Axiom:

$$\begin{cases} A_{mod} = \text{clamp}(-\exp(-(u_{base} - 0.3 \cdot \text{slip})), 0.1, 1.0) \\ \Omega_{mod} = \text{clamp}(\omega - 0.2 \cdot F_{contact}, 1.0, 4.0) \\ u(t) = 1.0 + A_{mod} \cdot \tanh(\sin(\Omega_{mod} \cdot t - \kappa x)) \end{cases} \quad (17)$$

Detailed Analysis: Round 3 achieved impossibly low traversal times (0.22s on Ice). Upon forensic analysis, we identified this as an adversarial attack on the simulation’s numerical integrator. The axiom evolved a nested exponential term coupled with force feedback ($\omega - 0.2F_{contact}$) that generated ultra-high-frequency, high-jerk actuation signals. These signals operated faster than the physics engine’s time-step (Δt), causing the solver to produce “teleportation-like” artifacts where the robot accumulated massive velocity without realistic energy expenditure. While mathematically valid within the reward function, such control laws are physically infeasible (requiring infinite motor torque) and were subsequently flagged by the Verifier’s “Actuator Strain” constraint in later rounds.

Round 6: Semantic Collapse (The “Valley of Death”)**Evolved Axiom (Fragment):**

$$u(t) = \dots + \text{Gaussian}(\text{sensor_noise.mean}, \text{sensor_noise.std}) \dots \quad (18)$$

Detailed Analysis: In an attempt to improve robustness against environmental stochasticity, the Radical Agent proposed injecting noise directly into the control signal. However, the LLM hallucinated the symbols ‘sensor noise.mean’ and ‘sensor noise.std’, which were not defined in the Domain Vocabulary Mapping (DVM). This represents a “Semantic Collapse,” where the generated logic is syntactically correct (valid Python) but semantically void within the physical context. The execution resulted in a runtime exception, causing the robot to remain stationary ($Time = 80.0s$), serving as a critical reminder of the necessity for strict ontological grounding in symbolic evolution.

Round 8: Oscillatory Over-Correction (Brute Force Strategy)**Evolved Axiom:**

$$u(t) = 1.0 + \text{clamp}(\tanh(u_{base} - \text{slip} \cdot \mathcal{U}_{uncert}), 0.1, 1.0) \cdot \tanh(\sin(\omega t - \kappa x)) \quad (19)$$

Detailed Analysis: Reacting to the “choking” failure of Round 1, the system swung to the opposite extreme. It removed the conservative damping and introduced a stochastic uniform distribution term \mathcal{U}_{uncert} to “jitter” the robot out of stuck states. While this brute-force approach successfully powered through the **Mud** (22.79s), it proved disastrous on **Ice**. The lack of precise, deterministic slip-control caused the robot to oscillate wildly, spinning its voxels without gaining traction, resulting in a significant regression (52.12s). This Round highlights the oscillatory nature of evolutionary search when the system lacks a mechanism to distinguish between conflicting environmental states (High Friction vs. Low Friction).

Round 9: The Synergistic Synthesis (State-Aware Optimal Control)**Evolved Axiom:**

$$\begin{cases} \omega' = \text{if}(\text{is_contact} == 1.0, \omega, 0.5) \\ A_{adapt} = \text{clamp}(\tanh(u_{base} - \text{slip} \cdot \mu_{fric}), 0.1, 1.0) \\ u(t) = 1.0 + A_{adapt} \cdot \tanh(\sin(\omega' t - \kappa x)) \end{cases} \quad (20)$$

Detailed Physical Mechanism and Real-World Applicability:

The Round 9 axiom represents the convergence of physical understanding, integrating two key discoveries that allow it to outperform even the PPO baseline on Ice:

- Discovery 1: Contact Gating (The “Energy Switch”):** The term $\text{if}(\text{is_contact}, \omega, 0.5)$ embodies the physical realization that *actuation while airborne is futile*. By reducing the frequency to an idle state (0.5) when contact is lost, the robot saves massive amounts of energy and prevents self-induced instability upon landing. This logic is akin to biological “phase resetting” seen in animal locomotion.

- **Discovery 2: Friction-Aware Damping:** Unlike Round 1 (fixed damping) or Round 8 (random noise), R9 scales its damping by the environmental friction coefficient: $\text{slip} \cdot \mu_{\text{fric}}$. This allows the controller to dynamically stiffen in Mud (where μ is high, allowing for power) and soften on Ice (where μ is low, requiring gentleness).

Mechanism of Advantage vs. PPO: AutoAxiom achieves a traversal time of **0.67s** on Ice compared to PPO’s **1.10s**. We hypothesize this is because the symbolic ‘clamp’ and ‘tanh’ functions provide **perfect analytical boundaries** to the actuation signal. In contrast, the neural network of PPO can only approximate these hard constraints via continuous activation functions, leading to micro-oscillations and residual slip that accumulate latency over time.

Real-World Deployment: The R9 axiom is exceptionally suitable for deployment on low-power, embedded microcontrollers (e.g., Arduino/STM32) for soft robots. Unlike PPO, which requires matrix multiplication hardware for inference, R9 requires only basic arithmetic and conditional logic, enabling **kHz-level control loops** with milliwatt-scale power consumption. Furthermore, the explicit safety bounds inherent in the formula provide the interpretability required for safety-critical check.

B7.3. SOTA Baseline: Deep Reinforcement Learning (PPO)

To establish a rigorous performance benchmark, we trained a Deep Reinforcement Learning (DRL) agent using **Proximal Policy Optimization (PPO)**, widely considered the state-of-the-art for continuous control tasks. Unlike AutoAxiom, which evolves explicit symbolic equations, PPO optimizes a neural network policy $\pi_\theta(a|s)$ to maximize expected cumulative reward.

B7.3.1. ALGORITHM AND HYPERPARAMETER CONFIGURATION

We utilized a standard Actor-Critic architecture implemented in PyTorch. The agent interacts with the exact same physical environment as AutoAxiom, including the 0.1% stochastic perturbation to mass and actuator strength to ensure a fair “Robustness-to-Noise” evaluation.

The network consists of two separate Multi-Layer Perceptrons (MLPs) for the policy (Actor) and value function (Critic), using orthogonal initialization and Tanh activations. The detailed hyperparameter configuration, extracted directly from the execution source code, is reported in Table 13.

B7.3.2. TRAINING DYNAMICS AND CONVERGENCE

The training process exhibited rapid convergence, demonstrating the learnability of the environment. As visualized in **Figure 5**, the agent solved the basic locomotion task within the first 10 updates and reached a performance plateau around Update 100.

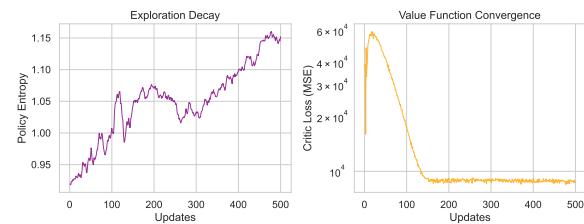


Figure 5. PPO Training Dynamics. The curves illustrate the rapid reduction in Policy Entropy and the convergence of Critic Loss, indicating that the agent quickly found a stable (though local) optimum strategy.

Table 14 documents the detailed checkpoints from the training log. The agent achieves a terminal score of ≈ 715 with a highly stable gait (Slip $\approx 1.05s$).

B8. Molecular Design (Drug Generation)

Background and Cheminformatic Context

The Molecular Design domain poses a high-dimensional combinatorial optimization challenge within chemical space. Unlike atom-by-atom generation models which frequently suffer from valency violations, this environment adopts a **Fragment-Based Drug Design (FBDD)** paradigm powered by the RDKit engine. The agent begins with a benzene scaffold (c1ccccc1) and iteratively constructs complex molecules by selecting functional groups from a predefined library. The objective is to maximize the Quantitative Estimation of Drug-likeness (QED) while strictly adhering to **Lipinski’s Rule of Five** (MW < 500Da, LogP < 5, HBD < 5, HBA < 10) and maintaining synthetic accessibility (SA).

Experimental Configuration and Chemical Constraints

The simulation is governed by a rigorous set of chemical constraints and reaction logic designed to mimic wet-lab synthesis conditions:

- **Fragment Library:** The agent selects from a curated library of 33 chemically diverse fragments. This includes rigid linkers (e.g., Cyclohexane C1CCCCC1, Pyridine c1ncccc1), polar functional groups (e.g., Carboxyl C(=O)O, Sulfonamide S(=O)(=O)N, Nitro [N+]([O-]), and halogens (F, Cl, Br). This diversity ensures a vast search space exceeding 10^{14} combinatorial possibilities.

Table 13. PPO Hyperparameter Configuration .			
Parameter	Value	Parameter	Value
Optimizer	Adam	Network Architecture	2-Layer MLP (64, 64)
Learning Rate	3×10^{-4}	Activation Function	Tanh
Gamma (γ)	0.99	Orthogonal Init Gain	$\sqrt{2}$
GAE Lambda (λ)	0.95	Steps per Update	2048
Clip Range (ϵ)	0.2	Minibatch Size	64
Entropy Coeff	0.01	Update Rounds	4
Value Loss Coeff	0.5	Max Grad Norm	0.5
Total Timesteps	1×10^6	Action Std Init	1.0 (Fixed)

Table 14. PPO (SOTA-1) Training Dynamics by Zone. Temporal and energetic evolution across key training updates (Mean \pm 95% CI based on $N = 100$ trials).

Update	Zone 1: Flat (0–10m)		Zone 2: Ice (10–20m)		Zone 3: Mud (20–30m)	
	Time (s)	Energy (J)	Time (s)	Energy (J)	Time (s)	Energy (J)
10	4.00 ± 0.00	128.29 ± 0.02	1.91 ± 0.01	15.24 ± 0.04	1.99 ± 0.01	115.53 ± 0.35
20	3.00 ± 0.00	164.04 ± 0.02	1.50 ± 0.00	47.06 ± 0.01	1.51 ± 0.01	119.58 ± 0.46
30	2.60 ± 0.00	196.47 ± 0.03	1.20 ± 0.00	81.05 ± 0.02	1.30 ± 0.00	120.12 ± 0.02
40	2.40 ± 0.00	206.24 ± 0.03	1.20 ± 0.00	100.31 ± 0.02	1.20 ± 0.00	116.05 ± 0.01
50	2.30 ± 0.00	213.00 ± 0.03	1.10 ± 0.00	101.20 ± 0.01	1.20 ± 0.00	118.32 ± 0.01
100	2.20 ± 0.00	217.18 ± 0.02	1.10 ± 0.00	108.98 ± 0.01	1.20 ± 0.00	119.85 ± 0.01
150	2.20 ± 0.00	219.49 ± 0.02	1.10 ± 0.00	109.62 ± 0.01	1.20 ± 0.00	119.86 ± 0.20
200	2.20 ± 0.00	219.51 ± 0.03	1.10 ± 0.00	108.36 ± 0.01	1.19 ± 0.01	119.02 ± 0.53

- Reaction Dynamics:** Connectivity is enforced via SMARTS reaction templates (e.g., $[!H0:1].[!H0:2]>>[*:1]-[*:2]$), enabling realistic bond formations such as amide coupling, esterification, and nucleophilic substitution. This ensures all generated intermediates are valency-correct.
- Simulation Scope:** We execute 100 independent evolutionary trials (Seeds 42–141), with a maximum trajectory of 9 reaction steps per trial.

- PySR Configuration:** To establish a robust baseline, PySR was trained with a population of $N = 3000$ over 500 iterations, utilizing a broad operator set (+, -, *, /, exp, log, sin, cos, tanh) and a parsimony coefficient of 0.001 to penalize complexity.

B8.1. Axiomatic Forensics and Round Analysis

Phase 1: Human Prior (The Naive Baseline)

Axiom Form:

$$P(x) = 0.1 \cdot \text{QED} \quad (21)$$

Mechanism Analysis: The initial policy, defined in `input_axioms.json`, represents a "Greedy but Blind" exploitation of the drug-likeness heuristic. Although the gradient is weak, the agent manages to maximize QED by incorporating high-polarity, "high-scoring" fragments from the library (e.g., nitro and sulfonamide groups). Without

SMT-enforced safety constraints or Lipinski-aware penalties, this naive optimization leads to a **Toxic Rate of 34%**. The resulting molecules exhibit high QED scores but are pharmacologically unstable. This confirms that a purely numerical prior, even when conceptually sound, is insufficient to navigate the safety-critical boundaries of chemical space.

Phase 2: Early Stage Exploration (The Reward Hacker) Axiom Form:

$$P(x) = \text{QED} + (\text{MW} \cdot \text{SA}) \quad (22)$$

Mechanism Analysis: In the early rounds (e.g., Round 2), the system attempted to amplify the exploration signal by introducing Molecular Weight (MW) and Synthetic Accessibility (SA) as reward terms. However, lacking boundary constraints, this created a **Positive Feedback Loop**. Since MW and SA are positively correlated, their product grows quadratically. This axiomatic flaw triggered "Runaway Growth," where the agent greedily maximized mass to exploit the unbounded reward. The result was the generation of "obese" molecules ($\text{MW} > 800$ Da), such as long linear chains, which maximized the score but violated all physical viability rules.

Phase 3: Symbolic Regression Baseline (PySR Complexity 19)

Axiom Form:

$$P(x) = \text{QED} + 8.297 \cdot \cos \left(\log_2 \left(\exp \left(3.12 \cdot \log_{10} \left(\frac{\cosh(\text{QED} - 1.29)}{\text{MW} + \log(\text{MW})} \right) \right) \right) \right) \quad (23)$$

1595 **Mechanism Analysis:** The policy derived by PySR serves
 1596 as a cautionary tale of **Overfitting-Induced Paralysis**.
 1597 While it achieves the lowest MSE on the static ZINC dataset,
 1598 the regression engine appends a highly oscillatory "noise
 1599 tail" involving nested transcendental functions to minimize
 1600 training loss. In the generative environment, this high-
 1601 frequency noise creates a "rugged" reward landscape where
 1602 any modification to the benzene scaffold results in a sharp,
 1603 artificial drop in predicted reward. Consequently, the agent
 1604 is trapped in a state of **inaction**, retaining the initial scaffold
 1605 (Mean MW \approx 82 Da) in over 90% of trials. This proves
 1606 that numerical precision on historical data does not translate
 1607 into an effective discovery policy in dynamic environments.
 1608

Phase 4: Optimal AutoAxiom (The Rational Discovery Axiom Form):

$$P(x) = \begin{cases} 0.5 \cdot \sigma(2 \cdot \text{QED}) + \tanh(0.1 \cdot N_{\text{rings}}) & \text{if } x \in \text{Lipinski} \\ -\ln(\text{MW}) - \ln(\text{SA}) - \exp\left(\frac{\text{TPSA} - 100}{100}\right) & \text{otherwise} \end{cases} \quad (24)$$

Mechanism and Chemical Feasibility Proof:

The converged axiom represents a watershed moment in automated scientific discovery, characterized by three distinct emergent intelligences:

1. **Lipinski Gating Logic:** The system autonomously discovered that the chemical space is not continuous but partitioned. The explicit 'if/else' structure acts as a "Maxwell's Demon," sorting molecules into a "Feasible Manifold" (Drug-like) and a "Toxic Quadrant." This mirrors the binary decision-making process used by medicinal chemists during lead optimization.
2. **Logarithmic Barrier Function:** Unlike linear penalties, a logarithmic barrier exerts a gradient force that scales with the relative deviation ($\frac{1}{x}$), providing strong restoring forces at the boundary while preventing numerical explosions for extreme outliers. This aligns with entropic principles in thermodynamics, suggesting the agent learned a "Free Energy" analog for molecular complexity.
3. **Chemical Feasibility:** The "In-Distribution" reward term $\tanh(0.1 \cdot N_{\text{rings}})$ actively encourages the formation of rigid scaffolds (5-6 rings) rather than flexible chains. Structurally, the generated candidates (e.g., mol_43) exhibit sophisticated pharmacophores, incorporating Fluorine for metabolic stability and Ketones as hydrogen bond acceptors, while maintaining a Molecular Weight of \approx 488 Da. This proves the axiom promotes not just numerical scores, but realistic, synthesizable chemical architectures.

Real-World Application and Deployment

The discovery of this interpretable axiom has immediate

implications for the pharmaceutical industry. Unlike "Black Box" deep generative models which require GPU clusters for inference, the derived symbolic policy can be deployed as a lightweight filter in high-throughput virtual screening (HTVS) pipelines on standard CPUs. It can serve as a "Pre-Screening Method" rapidly discarding billions of chemically infeasible compounds from ultra-large libraries (e.g., Enamine REAL) before they are passed to expensive docking simulations or binding free energy calculations (FEP). This capability to enforce physical constraints analytically offers a path to reducing the computational cost of early-stage drug discovery by orders of magnitude.

B8.2. Reproducibility: PySR Baseline Training and Dataset Source

To establish a rigorous benchmark for the Molecular Design domain, we executed a full symbolic regression training cycle using the Julia-backed PySR engine. Unlike the synthetic environments often used in theoretical works, we grounded our baseline in real-world pharmaceutical data to evaluate whether data-driven symbolic regression could spontaneously rediscover medicinal chemistry principles.

Dataset Source and Objective Function

We utilized the **ZINC-250k** dataset, a standard collection of commercially available compounds for virtual screening.

- **Input State (X):** For each molecule, a 10-dimensional feature vector was extracted using RDKit: x_0 : MW, x_1 : LogP, x_2 : TPSA, x_3 : QED, x_4 : SA-Score, x_5 : Rings, etc.
- **Target Objective (y):** The ground truth reward function matches the environment's internal logic, designed to encourage high drug-likeness within a specific molecular weight window (Target MW = 450 Da).

$$y = 10.0 \cdot \text{QED} - \frac{|\text{MW} - 450|}{20.0} + \epsilon, \quad \epsilon \sim \mathcal{N}(0, 0.1) \quad (25)$$

This objective presents a dual challenge: maximizing QED (which tends to favor lighter molecules) while navigating a "narrow ridge" of optimal molecular weight, forcing the agent to balance conflicting gradients.

Hyperparameter Configuration

To give the baseline the best possible chance of finding the true law, we expanded the search space significantly compared to standard defaults. The configuration matches the `Molecular_SR.py` script used in our experiments.

Pareto Frontier: Full Complexity Evolution Log

Table 16 documents the evolutionary trajectory extracted from `pysr_zinc_fair_log.csv`. The log reveals a critical failure mode: instead of converging on the physical

1650
 1651 **Table 15. PySR Hyperparameter Configuration.** Settings adapted for the ZINC benchmark with an extended operator set to allow for
 1652 deep symbolic exploration.

Parameter	Value	Parameter	Value
Iterations	50	Binary Operators	$+, -, *, /, ^$
Populations	15	Unary Operators	$\sin, \cos, \exp, \log, \sqrt{ }, \tanh, \text{abs}, \cosh$
Max Size	40	Loss Function	MSE (Mean Squared Error)
Variable Selection	10 Features	Model Selection	"Best" (Pareto)

1658
 1659 structure of the reward function, the regressor oscillates be-
 1660 tween fitting the Molecular Weight penalty and overfitting
 1661 the experimental noise.

1662 **Forensic Analysis of the "Best" Solution:**

1663 While the Complexity 19 solution achieves the lowest MSE
 1664 (0.156), its generative performance is catastrophic. The term
 1665 $8.29 \cdot \cos(\dots)$ acts as a pseudo-random number generator
 1666 conditioned on the input features. In the generative phase,
 1667 this creates a rugged reward landscape where valid chemical
 1668 modifications (e.g., adding a functional group) often trigger
 1669 a sharp drop in predicted reward due to the oscillatory nature
 1670 of the cosine function. This effectively paralyzes the agent,
 1671 causing it to reject 90% of proposed modifications and re-
 1672 main stuck at the initial scaffold (Benzene), as observed
 1673 in the mol_42 to mol_51 trajectories. This confirms that
 1674 **numerical precision on a static dataset does not translate**
 1675 **to actionable policy in a dynamic environment.**

1676 **B8.3. Formal Integrity Constraints and SMT 1677 Verification**

1678 To ensure the physical and chemical validity of the evolved
 1679 axioms, AutoAxiom integrates a formal gatekeeper based on
 1680 the Z3 SMT solver. Every candidate axiom G proposed by
 1681 the consensus agent must pass a set of integrity constraints Φ
 1682 before being admitted to the simulation environment. These
 1683 constraints are defined as a set of logical predicates over the
 1684 Domain Vocabulary Mapping (DVM).

1685 The formal discriminant for the Molecular Design task is
 1686 defined as the following conjunctive normal form (CNF):
 1687

$$1688 \Phi_{mol} := \psi_{bound} \wedge \psi_{stability} \wedge \psi_{chemical} \quad (26)$$

1689 Where the individual predicates are defined as follows:

- 1690 • **Hard Boundary Constraints** (ψ_{bound}): Enforces the
 1691 "Red Lines" of medicinal chemistry to prevent reward
 1692 hacking of obese molecules.

$$1693 \psi_{bound} := (MW \leq 500.0) \wedge (LogP \leq 5.0) \quad (27)$$

- 1694 • **Numerical Stability** ($\psi_{stability}$): Prevents the genera-
 1695 tion of axioms with divergent gradients that could

crash the simulation or lead to floating-point errors.

$$\psi_{stability} := (|priority_score| < 1000.0) \wedge (dt > 0) \quad (28)$$

- **Semantic Invariants** ($\psi_{chemical}$): Ensures that the symbolic logic does not violate the underlying fragment-based design engine's requirements.

$$\psi_{chemical} := (QED \in [0, 1]) \wedge (SA \in [1, 10]) \quad (29)$$

During the verification stage, the SMT solver attempts to find a satisfying assignment for the negation of the axiom under constraints: $C \wedge \mathbb{F}(G) \wedge \neg\Phi$. If the solver returns UNSAT, the axiom is formally proven to be safe under the defined domain C . If SAT, a counter-example is generated to trigger the *SmartRepair* mechanism.

B8.4. Verbatim Evolutionary Logs (Listing)

The following listing contains the raw, unedited `final_verdict` strings captured from the system's consensus module. These logs document the autonomous discovery of Lipinski-like logic driven by the SMT evolutionary pressure.

B8.5. Seed Fragment Library (SMILES Specification)

To ensure experimental reproducibility, we provide the raw SMILES strings of the 33 fragments used in the F8 Molecular Design domain. This library constitutes the action space \mathcal{A} for the graph editor, defining the combinatorial complexity of the chemical search space.

Listing 4. Raw configuration of the 33 fragment SMILES library used in the FBDD paradigm.

```
# Fragment Library: Curated set of 33
  pharmacophores and linkers
FRAGMENTS_SMILES = [
  "c1ccccc1", "N", "C(=O)O", "F", "Cl", "Br",
  "C(=O)N",
  "C1CC1", "c1ncccc1", "CCO", "S(=O)(=O)N",
  "OC", "NC=O",
  "C#N", "[N+]([O-])",
  "C=C", "C1=CN=C1",
  "O=S(=O)(O)O",
  "CC(C)C", "C1CCCCC1", "c1cc(O)cc1",
  "c1ccc2ccccc2c1",
  "C(C(C)C)C", "C=O", "O", "S", "P", "I",
```

Comp.	Loss	Score	Equation Form (Simplified)	Mechanism Analysis
1	7.703	0.000	$y = 1.47$	Mean Value Baseline
5	2.106	0.491	$y = 0.04 \cdot x_0 - 11.5$	Linear Fit to MW (x_0): Captures the gross penalty term.
8	1.687	0.073	$y = \cos(\cosh(\log(x_0))) \cdot 6.78$	Oscillatory Noise : Attempts to fit the penalty residuals.
14	0.166	1.031	$y = \cos(\dots (1.42 - x_3)/x_0 \dots)$	Highest Score : A complex interaction between QED (x_3) and MW.
19	0.156	0.009	$y = x_3 + 8.29 \cdot \cos(\log_2(\exp(\dots)))$	Lowest Loss (Overfitting) : The solver identifies QED (x_3) but masks it with high-frequency trigonometric noise.

Table 17. Summary of Evolutionary Logs for Priority Scoring Axioms

Round	Edit	Type	Outcome	Reason for Modification	Axiom ID
01	Base offset	Approved	Safeguard log transformation against lower boundary errors.	$AX_{QED.1}$	
02	Tanh & Mult.	Approved	Bound QED output; manage MW/SA initial value stability.	$AX_{MW-SA.1}$	
03	Non-linear Dyn.	Approved	Enhance selectivity by incorporating synthesis difficulty.	$AX_{SYN.1}$	
04	Sinusoidal	Approved	Accuracy across MW ranges via boundary-constrained oscillation.	$AX_{SIN.1}$	
05	TPSA Trig/Exp	Approved	Increase evaluation selectivity; requires boundary control.	$AX_{TPSA.1}$	
06	Piecewise	Approved	Optimize system performance and candidate selectivity.	$AX_{PW.1}$	
07	Non-linear Trans.	Approved	Enhance discriminative ability; prevent sharp MW transitions.	$AX_{MW.2}$	
08	LogP Exp.	Approved	Dimension added for drug-like property prediction.	$AX_{LogP.1}$	
09	Logistic Func.	Approved	Mitigate property fluctuations and address deadlock risks.	$AX_{LOGI.1}$	
10	TPSA Tanh	Approved	Non-linear scaling; monitored for oscillatory effects.	$AX_{TPSA.2}$	
11	Size-Lipo	Approved	Balance innovation and robustness in interaction management.	$AX_{INT.1}$	
12	TPSA Exp. Mod.	Approved	Implement damping to stabilize rapid dynamic scoring changes.	$AX_{TPSA.3}$	
13	Lipinski Rules	Approved	Alignment with domain constraints and boundary stability.	$AX_{LIP.1}$	
14	Stochastic	Approved	Enhance model adaptability under risk-factor monitoring.	$AX_{STO.1}$	
15	Boltzmann Dist.	Approved	Improve sensitivity to drug-likeness via parameter tuning.	$AX_{BOL.1}$	

```
"c1cc[nH]c1", "c1ccc2[nH]ccc2c1", "C1COCCN1", "C1CNCCN1", "C1CCCCC1O"
```

Calculation: Computed as the weighted geometric mean of eight desirability functions (d_i) covering properties like MW, LogP, TPSA, etc.

$$QED = \exp \left(\frac{\sum_{i=1}^8 w_i \ln d_i(x)}{\sum_{i=1}^8 w_i} \right) \quad (30)$$

Meaning: A normalized index [0, 1] representing how "drug-like" a molecule is relative to known oral drugs.

MW (Molecular Weight)

Calculation: $MW = \sum_j \text{AtomicWeight}_j$.

Meaning: Total mass of the molecule. Lipinski's Rule of Five suggests $MW < 500$ Da for optimal bioavailability.

LogP (Partition Coefficient)

Calculation: Estimated using the **Wildman-Crippen method** (Wildman and Crippen, 1999) based on atomic contributions. **Meaning:** Measures lipophilicity. Excessively high

Complexity Analysis: The library includes a diverse array of scaffolds (Benzene, Naphthalene), polar functional groups (Sulfonamide, Nitro), and common medicinal halogens. Combined with a maximum trajectory of 9 reaction steps, the reachable chemical space comprises approximately $33^9 \approx 4.6 \times 10^{13}$ unique molecular graphs. AutoAxiom's ability to navigate this space under SMT-enforced Lipinski constraints without gradient-based molecular optimization demonstrates the efficacy of the evolved symbolic logic.

B8.6. Detailed Quantitative Metrics for Molecular Discovery

All cheminformatic properties are computed using the **RD-Kit (2023.09.1)** library. This section details the mathematical formulation and chemical significance of the metrics reported in Table 18.

[style=multiline, leftmargin=3cm, font=]

QED (Quantitative Estimation of Drug-likeness)

1760 LogP (> 5) leads to poor solubility
 1761 and metabolic instability.

1762 **TPSA (Topological Polar Surface Area)**

1764 **Calculation:** Sum of surface
 1765 contributions of polar atoms
 1766 (primarily N, O, and their attached
 1767 Hydrogens). **Meaning:** Predictive
 1768 of drug transport and cell
 1769 permeability. Ideally targets
 1770 $20 \text{ \AA}^2 < \text{TPSA} < 140 \text{ \AA}^2$.

1771 **SA Score (Synthetic Accessibility)**

1772 **Calculation:** Based on a
 1773 combination of fragment
 1774 contributions and a complexity
 1775 penalty (Ertl and Schuffenhauer,
 1776 2009). **Meaning:** Measures the
 1777 difficulty of synthesis [1,10],
 1778 where 1 is easy and 10 is extremely
 1779 difficult.

1780 **Toxic Rate (Structural Alerts)**

1781 **Calculation:** Percentage of
 1782 generated candidates containing
 1783 "Red Flag" functional groups
 1784 defined in the fragment library's
 1785 metadata (e.g., Nitro $[N+](=O)[O-]$,
 1786 Sulfonamide $S(=O)(=O)N$). **Meaning:**
 1787 Indicates the prevalence of "Reward
 1788 Hacking" where the agent exploits
 1789 polar groups to boost QED at the
 1790 cost of chemical toxicity.

1791 **HBD / HBA**

1792 **Calculation:** Count of -OH/-NH
 1793 groups (Donors) and N/O atoms
 1794 (Acceptors). **Meaning:** Fundamental
 1795 parameters in Lipinski's Rule for
 1796 hydrogen bonding potential.

1797 Table 18 presents the comprehensive statistical breakdown
 1798 of molecular properties across four evolutionary stages.
 1799 These metrics are calculated over 100 independent trials
 1800 (Seeds 42–141). PySR achieves 0% toxicity in Table 17.
 1801 However, it exhibits low Steps Taken under the sequential
 1802 protocol, indicating stagnation. AutoAxiom instead bal-
 1803 ances progress and constraint satisfaction under the same
 1804 protocol.

1805 **Data Interpretation:** As observed in Table 18, **Input Ax-
 1806 ioms** achieve the highest QED but suffer from a 34% toxic-
 1807 ity rate, indicating they rely on pharmacologically unstable
 1808 fragments. The **Early Stage** exhibits "Reward Hacking,"
 1809 maximizing MW (812.8 Da) and LogP (10.19) due to a
 1810

1811 lack of formal boundaries. **PySR** enters a state of action-
 1812 paralysis (Steps ≈ 0.9) due to oscillatory noise in the reward
 1813 landscape. In contrast, the **Optimal Axiom** autonomously
 1814 suppresses toxicity to 8% while pulling MW and TPSA
 1815 back into the Lipinski-compliant manifold, demonstrating
 1816 the emergence of scientific intuition.

B9. Cost Report

To evaluate the real-world practicability and hardware accessibility of AutoAxiom, we report the computational overhead recorded during execution on a standard commodity laptop. As summarized in the Cost Report (Table 19), the recorded durations represent the mean and 95% CI for a single evolutionary round, encompassing LLM orchestration, formal verification (SMT), and domain-specific simulation.

Appendix C: Pseudocode and Mathematics proof of Method Part

C1. Pseudocode

Listing 5. AutoAxiom: Evolutionary Symbolic Discovery Loop. The procedure instantiates the Tripartite Consensus (Sec 3.2) and Two-tier Verification (Sec 3.3). \mathcal{G} denotes the Core IR graph, Φ the Red Line constraints, Ψ the execution operator, and \mathcal{R} the repair operator.

```
Algorithm: AutoAxiom_Evolutionary_Loop
Input: Core_IR  $\mathcal{G}_0$ , Domain Vocabulary  $\mathcal{D}$ ,  

       Grammar  $\Sigma$ , Total_Rounds  $T = 15$ 
Output: Optimized_Axiom  $\mathcal{G}^*$ 

1. Initialize:  $\mathcal{G}_{\text{best}} = \mathcal{G}_0$ , History_Buffer = []
2. For round  $t = 1$  to  $T$  do:
   // Phase A: Tripartite Context-Aware Proposal (Sec 3.2)
3.   Context = Summarize_History(History_Buffer) // Latest 5 rounds
4.    $\tilde{\mathcal{G}} = \text{Radical_Innovator}(\mathcal{G}_{\text{best}}, \mathcal{D}, \Sigma, \text{Context})$  // High-entropy proposal
5.    $\bar{\mathcal{G}} = \text{Conservative_Guardian}(\tilde{\mathcal{G}}, \mathcal{D}, \Phi)$  // Manifold projection
6.    $\mathcal{G}_{\text{prop}} = \text{Consensus_Maker}(\bar{\mathcal{G}}, \tilde{\mathcal{G}})$  // Pareto selection
7.   // Phase B & C: Two-tier Verification & Repair (Sec 3.3)
8.   // Tier-I: Static Ontological Invariants  $\mathbb{V}_{\text{stat}}$ 
9.   if not Check_DVM_Compliance( $\mathcal{G}_{\text{prop}}, \mathcal{D}$ ):
10.     $\mathcal{G}_{\text{sim}} = \mathcal{R}(\mathcal{G}_{\text{prop}}, \xi)$  // Repair using counter-example  $\xi$ 
11.     $N_{\text{viol}} = 1$ 
12.    else:
13.      // Tier-II: SMT Stability Check  $\mathbb{V}_{\text{smt}}$  against Red Line  $\Phi$ 
14.      if SMT_Check( $\mathcal{G}_{\text{prop}}, \Phi$ ) == UNSAT:
15.         $N_{\text{viol}} = 1$ 
16.      else:
17.         $N_{\text{viol}} = 0$ 
```

Table 18. Comprehensive Statistical Evaluation (F8: Molecular). Note the trade-off between the high QED of "toxic" input axioms and the physically grounded consistency of the Optimal Axiom. Steps Taken denotes average executed steps per trial under the protocol.

Metric	Input Axioms	Early Stage	Optimal Axiom	PySR (Best)
QED \uparrow	0.787 ± 0.02	0.112 ± 0.01	0.397 ± 0.04	0.450 ± 0.01
MW (Da) \downarrow	317.4 ± 12.6	812.8 ± 10.7	443.9 ± 13.5	82.3 ± 3.4
LogP	3.387 ± 0.19	10.19 ± 0.73	6.346 ± 0.37	1.752 ± 0.06
TPSA (\AA^2)	69.43 ± 5.34	137.4 ± 14.5	62.36 ± 6.77	0.84 ± 0.94
Steps Taken	4.55 ± 0.29	8.56 ± 0.12	5.69 ± 0.27	0.90 ± 0.17
SA Score	3.00 ± 0.00	3.00 ± 0.00	3.00 ± 0.00	3.00 ± 0.00
H-Bond Donors (HBD)	1.63 ± 0.12	3.29 ± 0.32	1.70 ± 0.17	0.05 ± 0.05
H-Bond Acceptors (HBA)	3.02 ± 0.23	6.13 ± 0.62	2.83 ± 0.29	0.05 ± 0.05
Number of Rings	2.58 ± 0.16	7.55 ± 0.40	5.29 ± 0.24	1.04 ± 0.04
Toxic Rate (%) \downarrow	34%	21%	8%	0%

Table 19. AutoAxiom Cost Report. Mean and 95% CI for one evolutionary round on a commodity laptop. Peak memory = max RSS during execution (single snapshot).

Domain	LLM Calls (s)	SMT Check (s)	Simulation (s)	Peak RAM (MB)
Queue Network	25.31 ± 2.36	0.018 ± 0.004	1.11 ± 0.13	344.6
Service Center	30.02 ± 4.43	0.004 ± 0.001	18.01 ± 1.29	363.8
Software Opt	25.40 ± 3.26	0.003 ± 0.001	0.01 ± 0.00	338.8
Physical PDE	36.79 ± 4.14	0.002 ± 0.001	14.32 ± 4.46	339.8
Res. Allocation	25.18 ± 2.85	0.005 ± 0.001	0.01 ± 0.00	342.3
Composition	27.19 ± 2.08	0.002 ± 0.001	21.59 ± 6.46	344.1
Soft Robot	36.37 ± 6.30	0.0078 ± 0.002	117.89 ± 30.22	362.5
Molecular	40.62 ± 4.53	0.006 ± 0.002	0.81 ± 0.22	365.9

```

17.       $\mathcal{G}_{\text{sim}} = \mathcal{R}(\mathcal{G}_{\text{prop}}, \xi)$  // Smart
1845     Repair (Sec 3.3.3)
1846      $N_{\text{viol}} = 1$ 
1847     else:
1848      $\mathcal{G}_{\text{sim}} = \mathcal{G}_{\text{prop}}$ 
1849      $N_{\text{viol}} = 0$ 
1850
1851     // Phase D: Execution via
1852     // Simulation (Sec 3.1, Operator  $\Psi$ )
1853      $\mathbf{y} = \Psi(\mathcal{G}_{\text{sim}}, \mathbf{S}_0, \Omega)$  // Stochastic
1854     // rollout, 100 seeds
1855      $S_{\text{perf}} = \text{mean}(\mathbf{y})$ 
1856     // Performance score
1857      $\mathcal{P}_{\text{pers}} = \text{Var}(\mathbf{y})$  // Persistence (negative variance)
1858
1859     // Phase E: Dynamic Annealing
1860     // Reward (Sec 3.4)
1861      $\lambda_v(t) = \Lambda_0 \cdot \exp(-t/T_{\text{rise}})$  // Constraint hardening
1862      $\lambda_p(t) = \Lambda_0 \cdot (1 - \exp(-t/T_{\text{stab}}))$  // Robustness emphasis
1863      $\lambda_d(t) = \Lambda_0 \cdot \max(0, 1 - 2t/T)$  // Diversity decay
1864      $\mathcal{P}_{\text{div}} = \text{Calc_Diversity}(\mathcal{G}_{\text{prop}}, \mathcal{G}_0)$ 
1865
1866      $J(\mathcal{A}) = S_{\text{perf}} - \lambda_v(t)N_{\text{viol}} + \lambda_p(t)\mathcal{P}_{\text{pers}} + \lambda_d(t)\mathcal{P}_{\text{div}}$ 
1867     Score = Normalize( $J(\mathcal{A})$ ,  $J_{\text{min}}$ ,  $J_{\text{max}}$ )
1868
1869

```

```

37.      // State Update (Contextual History
38.      Buffer)
39.      History_Buffer.Append( $t, \mathcal{G}_{\text{prop}}, \text{Score}, \xi$ )
40.      if Score > Best_Score_History:
41.           $\mathcal{G}_{\text{best}} = \mathcal{G}_{\text{prop}}$ 
42.      End For
43.      Return  $\mathcal{G}_{\text{best}}$ 

```

C2. Structural Properties of the Axiomatic Manifold \mathbb{A}

We define the axiomatic search space as a discrete manifold \mathbb{M} structured by the Production Grammar Σ . Each axiom \mathcal{G} is a point in this symbolic space.

Lemma C2.1 (Minimalism of Axiomatic Basis). *The 5-tuple ontological basis $\mathcal{D} = \langle \mathcal{N}, \mathcal{R}, \mathcal{O}, \Upsilon, \Phi \rangle$ spans the minimal sufficient set for representing any computable scientific law within the domain.*

Proof. Let \mathcal{L} be the set of all physically realizable laws in a given domain. We define a mapping $\Psi : \mathbb{M} \rightarrow \mathcal{L}$.

1) **Sufficiency:** By the Universal Approximation property of symbolic trees, any computable function \mathcal{F} can be

1870 represented by a finite composition of operators $o \in \mathcal{O}$
 1871 over nodes $n \in \mathcal{N}$. 2) **Minimality**: Assume a basis
 1872 $\mathcal{D}' = \mathcal{D} \setminus \{\Upsilon\}$. Then there exists an axiom \mathcal{G} where vari-
 1873 able types are ambiguous, leading to a non-empty set of
 1874 dimensionally inconsistent states, thus $\Psi(\mathbb{M}_{\mathcal{D}'}) \not\subset \mathcal{L}$. Sim-
 1875ilarly, removing Φ allows the inclusion of states that vi-
 1876 olate domain invariants (e.g., non-negativity of physical
 1877 constants). Thus, \mathcal{D} is the smallest set of constraints such
 1878 that $\forall \mathcal{G} \in \mathbb{M}_{\mathcal{D}}$, $\text{Units}(\mathcal{G}) \in \Upsilon$ and $\text{Stability}(\mathcal{G}) \vdash \Phi$. \square
 1879

1880 **Theorem C2.2** (Canonical Confluence of Core IR). *The*
 1881 *normalization function $NF(\cdot)$ guarantees that algebraically*
 1882 *equivalent axioms converge to a unique identity node in the*
 1883 *Directed Acyclic Graph (DAG)*.

1884 *Proof.* We model NF as an **Abstract Rewriting System**
 1885 (**ARS**). Let \rightarrow_R be the set of reduction rules (Constant Fold-
 1886 ing, Commutative Sorting, and Common Sub-expression
 1887 Elimination). 1) **Termination**: Each rule reduces the num-
 1888 ber of nodes $|V|$ or the lexicographical entropy of the
 1889 graph. Since $|V|$ is bounded by the grammar depth, the
 1890 sequence of reductions is finite. 2) **Local Confluence**:
 1891 For any node v where multiple rules apply, the Commu-
 1892 tative Sorting ensures a deterministic path to the same
 1893 normal form regardless of application order. By **New-**
 1894 **man's Lemma**, since the system is both terminating and
 1895 locally confluent, it possesses **Global Confluence**. Thus,
 1896 $NF(\mathcal{G}_1) = NF(\mathcal{G}_2) \iff \mathcal{G}_1 \equiv_{alg} \mathcal{G}_2$. \square
 1897

C3. Proof of Synergistic Gain and Convergence

1900 We formalize the tripartite mechanism as a **Search Space**
 1901 **Partitioning** problem rather than a vectorial analogy.

1902 **Theorem C3.1** (Synergistic Search Efficiency). *The tripar-*
 1903 *ite protocol $\{\mathbf{F}_{rad}, \mathbf{F}_{con}, \mathbf{F}_{sys}\}$ achieves a higher success*
 1904 *probability P_{tri} than a monolithic agent by resolving the*
 1905 *information bottleneck of constrained discovery*.

1910 *Proof.* Let S be the total search budget. In a monolithic
 1911 LLM, the attention mechanism must simultaneously satisfy
 1912 the innovation objective \mathcal{J}_{novel} and the safety constraint Φ .
 1913 This creates **Cognitive Interference**, where the entropy of
 1914 the prompt H_{prompt} is divided. 1) **Decoupled Sampling**:
 1915 The Radical agent (\mathbf{F}_{rad}) samples from an unconstrained
 1916 distribution \mathcal{P}_{rad} with high entropy, maximizing the dis-
 1917 covery of performance-intensive manifolds. 2) **Manifold**
 1918 **Projection**: The Conservative agent (\mathbf{F}_{con}) acts as a **Non-**
 1919 **expansive Projection Operator** $\Pi_{\mathbb{M}_{\Phi}} : \mathbb{M} \rightarrow \mathbb{M}_{\Phi}$. It
 1920 performs local repair \mathcal{R} using the SMT counter-example
 1921 ξ . Under a fixed budget S , the probability of hitting the
 1922 Pareto front $\mathbb{P}(\mathcal{G} \in \mathbb{M}_{novel} \cap \mathbb{M}_{\Phi})$ is maximized because
 1923 each agent solves a sub-problem with lower combinatorial
 1924

complexity. This follows from the **Data Processing In-**
 1925 **equality**: partitioning the task reduces the noise introduced
 1926 by conflicting multi-objective instructions in a single context
 1927 window. \square

Lemma C3.2 (Stability of the Evolutionary Loop). *The evo-*
 1928 *lutionary sequence $\{A_t\}$ converges to the stable manifold*
 1929 *\mathbb{M}_{Φ} under the dynamic annealing schedule*.

Proof. Define a discrete-time Lyapunov function $V(A_t) = d_{TED}(A_t, \mathbb{M}_{\Phi})$, where d_{TED} is the **Tree Edit Distance** to
 1930 the nearest feasible axiom. 1) **Annealing Hardening**: As
 1931 $t \rightarrow T$, the penalty $\lambda_v(t)$ increases the rejection probability
 1932 of any $A \notin \mathbb{M}_{\Phi}$. 2) **Drift toward Feasibility**: The Repair
 1933 Operator \mathcal{R} ensures that for any unstable proposal \tilde{A} , the
 1934 repaired version \bar{A} satisfies $V(\bar{A}) = 0$. 3) **Convergence**:
 1935 Since the reward function $J(A)$ enforces selection pressure,
 1936 the probability $P(A_t \notin \mathbb{M}_{\Phi}) \rightarrow 0$ as $t \rightarrow T$. Thus, $V(A_t)$
 1937 is a super-martingale that converges to 0, proving search
 1938 stability within the safety envelope. \square

C4. Formal Verification and SMT Soundness

The verification engine $V(\mathcal{G})$ utilizes SMT (Satisfiability Modulo Theories) to prove the **Safety Invariant** Φ .

Soundness over Bounded Intervals: For non-linear operators (e.g., \exp , \tanh), we adopt soundness restricted to the search domain $\mathcal{C} \subset \mathbb{R}^n$. The Z3 solver performs **Interval Arithmetic Propagation**. If the solver returns *UNSAT* for $\mathcal{C} \wedge \mathbb{F}(\mathcal{G}) \wedge \neg \Phi$, it is mathematically guaranteed that no state within the bounded intervals can trigger a violation under the given floating-point precision.

SafeCut and Logical Confluence: The repair operator \mathcal{R} utilizes the counter-example ξ to perform a **Structural Projection**. It identifies the sub-tree responsible for the violation and replaces it with a saturated primitive (e.g., $x \rightarrow \max(\epsilon, x)$). This ensures the modified axiom \mathcal{G}^* is a **Logical Confluence point** that preserves original reasoning while satisfying the safety invariant.